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1 Basic Contact Geometry

Let Y 2n+1 be an odd dimensional manifold equipped with a 1-form θ which has the property
that θ ∧ (dθ)n 6= 0 is a nonvanishing top form. By Fröbenius’ theorem, this means that the
distribution ξ := ker θ is maximally non-integrable.

This condition above is equivalent to requiring that dθ is a nondegenerate 2-form on ξ. Note
the similarities to dθ being symplectic.

Now, we’re able to define a vector field XR called the Reeb vector field in a unique way
on Y : XR satisfies ιXRdθ = 0 and θ(XR) ≡ 1. In some sense, the first condition says that X is
“symplectically” orthogonal to ξ; this follows from dθ being nondegenerate on ξ. XR is unique
because of the second condition which normalizes its length.

Next, though ξ is maximally nonintegrable, we can find lower dimensional submanifolds
with tangent bundle contained in ξ. In particular, a Legendrian submanifold L ⊂ Y is a
submanifold that satisfies TL ⊂ ξ and has dimension n.

Claim: Legendrian submanifolds are integral submanifolds of ξ of maximal dimension.

Proof. Recall that dθ(X, Y ) = Xθ(Y )−Y θ(X)−θ([X, Y ]); this is true for any 1-form θ. For any
distribution D to be integrable, we can equivalently check if it is involutive (using Fröbenius’
Theorem): if X, Y ∈ D, then [X, Y ] ∈ D as well.

In this case, we’re looking at ker θ. So [X, Y ] ∈ ker θ if and only if dθ(X, Y ) for all X, Y ∈
ker θ. The maximal dimension therefore, must be n because at each point, we’re looking for a
Lagrangian subspace in the symplectic vector space ker θ with symplectic form dθ.

Note that the Reeb vector field is transverse to any Legendrian submanifold L in the sense
that it is not tangent to L. Also, LXRθ = dιXRθ + ιXRdθ = 0. That is, the Reeb vector field
preserves θ. In more specific terms, if ϕt is the flow if XR, ϕ∗t θ = θ. Then, if we transport a
Legendrian submanifold around by the Reeb flow, it remains a Legendrian submanifold.

This, I believe, lends to the ideas behind Legendrian contact homology: given a Legendrian
knot K in some contact 3-manifold, one looks for integral curves of the Reeb vector field with
both endpoints on K. These are called Reeb chords.

The symplectization of Y is the symplectic manifold (M = Y × Rt, ω = d(etθ)). it is
not too hard to check that d(etθ) = et(dt ∧ θ + dθ) is a symplectic form. Moreover, consider
L × R where L ⊂ Y is Legendrian. In light of the claim above, one may check that L × R
is a Lagrangian submanifold of (M,ω). Moreover, if we sweep L along by XR, this gives a
Lagrangian submanifold as well: {ϕt(L)}t. I think these are the only Lagrangians in Y × R;
the only way to have a mix is for XR to point along the ∂t direction but that can’t happen.
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2 Boothby-Wang Fibrations

We first begin with a definition.

Definition 2.1. Let (Y, θ) be a contact manifold. We say that θ is a regular contact struc-
ture if at each point y ∈ Y , there exists a local coordinate chart (y1, ..., y2n+1) such that every
integral curve of the Reeb vector field which passes through the neighborhood does so only once.

Note that this implies that the integral curves are all closed sets. Let us now assume that Y
is compact; so the integral curves must be compact as well and thus, are homeomorphic to S1.
We then have a global S1 action on Y since the Reeb vector field never vanishes. Moreover, in
this setting, it was shown by Palais that the space B of orbits is a smooth manifold.

2.1 Main Theorem of Boothby-Wang

Therefore, we have a theorem by Boothby-Wang:

Theorem 2.2. Let (Y, θ) be a compact, regular, contact manifold and B be the space of orbits.
Then Y is a principal circle bundle over B and θ is a connection 1-form in this bundle. The
curvature form ω of θ defines a symplectic form on B and determines an integral cocycle.

Conversely, let B be a compact 2n-dimensional symplectic manifold whose symplectic form ω
determines an integral cohomology class. Then there exists a principal circle bundle π : Y → B
and a connection form θ in it which is a contact form on Y . Moreover, the Reeb vector field of
θ generates the right translations of the structural group S1 of this bundle.

An obvious example is that of the Hopf fibrations S2n+1 → CP n. Let’s give a sketch of the
proof.

Proof. Let π : Y → B be the map which sends a point in Y to the orbit that it’s in under
the Reeb flow ϕt. Since θ is a regular contact structure, we have around any point x ∈ Y ,
coordinates (x1, ..., x2n+1) on a neighborhood Ui which allow us to think of an integral curve as
having x1, ..., x2n fixed at some constants and just have x2n+1 vary.

Y is compact so we may take a finite number of Ui; then π(Ui) serve as an open cover of
B. Let’s describe the bundle structure. We may do so by finding local trivializations which
we construct from sections si(x

1, ..., x2n) = (x1, ..., x2n, c) where c is some constant. Then let
Φi : π(Ui)× S1 → Y be defined by (x, t) 7→ ϕt(si(x)).

Since the Lie algebra of S1 is R, a connection 1-form is found in Ω1(Y,R)⊗R. Let ∂s be a
basis for R; we will still write θ for θ ⊗ ∂s. To show that θ is a connection 1-form, we need to
show that θ satisfies:

1. For each p ∈ Y , g ∈ S1, θ transforms via the adjoint representation when we act on it by
right multiplication: θpg(v · g) = g−1 · θp(v) · g.

However, S1 is abelian and so the adjoint representation is trivial. Also, action by t := g
is v · t = dϕt(v). So θpt(v · t) = ϕ∗t θp(v) = θp(v).

2. For each p ∈ Y , Rp : S1 → Y is the map g 7→ p · g. Then, R∗pθ = ωMC ∈ Ω1(S1,Lie(S1)),
the Mauer-Cartan form which is the unique form that is invariant under left multiplication
and is the identity linear map on TeS

1 → Lie(S1).

Since θ is invariant under the Reeb flow, it is certainly invariant under left multiplication.
Moreover, since θ(XR) ≡ 1, then this normalization gives us an identity linear map on
TeS

1 → Lie(S1).
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Note: I wrote things with more general notation to show that these are the criteria to check in
general for connection 1-forms on principal G-bundles.

Next, let ω̃ be the curvature form of θ. This is normally ω̃ = dθ + [θ ∧ θ]. But the Lie
bracket of R is trivial so we have ω̃ = dθ. Moreover, dθ is horizontal and invariant under the
action of S1 so there exists ω such that ω̃ = π∗ω. We have that π∗dω = dπ∗ω = dω̃ = d2θ = 0.
Since π is projection and ω̃ is horizontal, this means that dω = 0. Moreover, π∗ωn = (dθ)n 6= 0
which is nonvanishing. Thus, ωn is non-vanishing and therefore a symplectic form. A result of
Kobayashi shows that ω ∈ H2(B,Z).

Conversely, principal S1-bundles over B are classified by H2(B,Z). This is because S1 =
U(1) and the classifying space BU(1) = CP∞ = K(Z, 2), an Eilenberg-MacLane space. Then,
homotopy classes of maps [B,K(Z, 2)] = H2(B,Z).

Let [ω] ∈ H2(B,Z) be our symplectic form and P → B be the corresponding principal
S1-bundle. Then let θ′ be a connection 1-form on P and ω′ be a 2-form such that dθ′ = π∗ω′.
But [ω′] = [ω] so ω = ω′ + dη. Let θ = θ′ + π∗η. One can show that θ is invariant under right
translations and also dθ = π∗ω.

Moreover, if X is a vertical vector field and θ′(X) ≡ 1, the same holds for θ(X) ≡ 1. Lastly,
to show that θ is a contact form, pick any point and a basis for the horizontal vectors, say
(v1, ..., v2n). Then we can show that θ ∧ (dθ)nx(v1, ..., v2n, X) 6= 0.

2.2 “Why do we need an integral class?”

I’ve often asked, “Why do we need an integral classes?” In Donaldson’s theorem from his paper
Symplectic Submanifolds and Almost Complex Geometry, he requires that [ω] ∈ H2(M,Z). At
least here, there is one interpretation.

Consider a disk D ∈ B and let γ be its boundary loop. If we horizontally lift γ to a path γ̃
in Y , we find that the lift is unique once we set an initial condition: γ̃(0) = y0 and π(y0) = γ(0).
We know that γ̃(1) is in the same fiber as its starting point but it may not be the same point.
This is measured by the holonomy of our connection θ. Recall that holonomy can be computed
by integrating a g-valued connection 1-form along the path and then using the exponential map
to get a value in G. Another view in our setting is that this lifted path picks up some action
in the Reeb vector field direction; it’s been off set from its starting point.

However, let’s suppose that γ is contained in a neighborhood U with which we can locally
trivialize the bundle. As such, we obtain a local section σ. Then

holγ(θ) = exp(2πi

∫
γ̃

θ) = exp(2πi

∫
γ

σ∗θ).

Since this is a section, note that (π ◦ σ)∗ = σ∗ ◦ π∗ = id. So then π∗ω = dθ implies that
ω = (π ◦ σ)∗ω = σ∗dθ = dσ∗θ. In other words, the integral above is equal, by Stoke’s theorem,
to ∫

γ

σ∗θ =

∫
D

ω,

the symplectic area of the disk. This means that the symplectic area tells us how much Reeb
action we pick up. Of course, one wonders about different capping disks (which are 2-chains
but not 2-cycles). Suppose we have D̂ as another capping disk for γ. If we glue them along γ,
we get a 2-cycle; in this case, a 2-sphere. If ω is integral, then ω integrated on the sphere will
be an integer k. This means that the holonomy does not depend on the capping disk:

holγ(θ) = exp(2πi

∫
D̂

ω) = exp(2πi(k +

∫
D

ω)) = exp(2πi

∫
D

ω).
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If γ is not in a neighborhood over which we can locally trivialize, we can still patch together
multiple charts Ui using different sections σi and this result should hold.

2.3 Contact tori do not admit Boothby-Wang fibrations

Claim: Odd dimensional tori do not admit regular contact structures and therefore, are not
the total space of some Boothby-Wang fibrations.

Proof. Let’s suppose that we do have a fibration

S1 T

B

π

where T is a (2n + 1)-torus. If B is also a torus, then this is a trivial fibration and the
contact form α on T would give an integrable distribution kerα with B = T 2n as the integrable
submanifold. But this is a contradiction as kerα should be maximally non-integrable. Another
way of putting this is that the curvature would have to be dα = ω = 0 since curvature measure
integrability of the horizontal distribution.

Suppose now that we do not know anything about B. But because of the long exact sequence
of homotopy groups for fibrations, we know that πk(T ) = πk(B) = 0 for k ≥ 2. And we also
have

0→ π2(B)→ Z→ Z2n+1 → π1(B)→ 0.

This means that π2(B) is a subgroup of Z and so isomorphic to 0 or Z. If it is isomorphic
to Z, then B has K(Z, 2) as a universal cover. But this can’t be as B is finite dimensional and
K(Z, 2) ' CP∞ is not.

So π2(B) = 0 which implies that Z2n+1 ∼= Z o π1(B) which shows that π1(B) = Z2n ⊕ C
where C is some finite cyclic group. We can in fact show that C = 0 (see below for lemma;
it shows that if C 6= 0, B must have infinite rank homology). In this case, B ' K(Z2n, 1), a
homotopy torus.

On the other hand, the Gysin sequence tells us that we have a long exact sequence on
cohomology:

...→ H∗(B)→ H∗(T 2n+1)→ H∗−1(B)→ H∗+2(B)...

with the connecting map (the last arrow) being wedging by the Euler class, a 2-form. In
this case, the bundle is nontrivial because the curvature (the symplectic form) is nonzero. so
the Euler class which is the 1st Chern class must be nonzero. So the map H0(B)→ H2(B) is
injective. In particular, we have this sequence in which the last arrow has ker = 0:

0→ H1(B)→ H1(T 2n+1)→ H0(B)→ H2(B)...

So then, we have that H1(B) ∼= Z2n+1. So H1(B) has rank 2n and 2n+ 1. A contradiction.

Lemma 2.3. Let G be a nontrivial finite group. Then there are infinitely many i such that
Hi(BG,Z) 6= 0. In particular, BG is infinite dimensional

Proof. By the long exact sequence on fibrations, we find that πk+1(BG) ∼= πk(G) for all k but
more over, πk(G) = 0 for k ≥ 1. So BG ' K(G, 1) in this case.

Now, EG, the universal bundle is contractible and so its Euler characteristic is χ(EG) = 1.
Now, suppose H∗(BG) is finite. Then its Euler characteristic is an integer: χ(BG) ∈ Z. But
also, by the multiplicativity of χ, χ(BG) · χ(G) = χ(EG) = 1. χ(G) = |G| and so χ(BG) =
1/|G| which is not an integer. This is a contradiction. So H∗(BG) must be infinite.
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2.4 Sasakian Manifolds

Now, it is always possible to find a Riemannian metric g on Y such that g(XR, ·) = θ. We
call (Y, θ, g) a metric contact manifold. Moreover, suppose that XR is a Killing vector field.
Letting ∇ be the Levi-Civita connection of g, we define a smooth section of End(TY ) of rank
2n by ϕ = ∇XR .

One can show that ϕ2 = − id +θ ⊗ XR, ϕ(XR) = 0, and g(ϕ(X), ϕ(Z)) = g(X,Z) −
θ(X)θ(Z). Moreover, if (∇Xϕ)Z = θ(Z)X − g(X,Z)XR is satisfied on Y , then (Y, θ, g) is
called a Sasakian manifold.

On the product Y×R, define an almost complex structure by J(Z, ∂s) = (ϕ(Z)−θ(Z)XR, θ(Z)∂s).
Then the product metric is Kähler with respect to this J if the structure on Y is Sasakian.

The standard contact structure on S2n+1 is Sasakian. Since the odd betti numbers of Kähler
manifolds are even, Sasakian manifolds must have their 1st betti number be even. With some
more work, one can show:

Theorem 2.4. The total space of the Boothby-Wang fibration is Sasakian if and only if the
base space is a Hodge manifold.

3 Liouville Domains

Most of this section and the next is based on A. Oancea’s survey paper on symplectic homology.

3.1 Overview

Definition 3.1. A (compact) hypersurface Σ in a symplectic manifold (M,ω) is said to be of
contact type if there is a vector field X defined in a neighborhood of Σ, transverse to Σ and
satisfies LXω = ω. X is called the Liouville vector field and λ = ιXω is the Liouville
form. If X is globally defined, then we say Σ is of restricted contact type

The boundary of a compact symplectic manifold M is said to be of (restricted) contact type
if the above conditions are satisfied and X is outward pointing.

Suppose we’re in the situation with Σ = ∂M . Note that since ω is closed, Cartan’s formula
tells us that LXω = dιXω = dλ = ω. So ω is exact with λ as a primitive. Moreover,
LXλ = dω(X,X) + ιXω = λ.

If we restrict λ to Σ, we find that it is a contact form since λ ∧ ωn−1 is nonvanishing on
Σ. In general, if (Y, α) is a contact manifold with ξ = kerα being the contact structure, then
consider a diffeomorphism ψ : M →M . ψ is a contactomorphism if dψ(ξx) = ξψ(x).

Claim: ψ is a contactomorphism if and only if ψ∗α = ehα where h : Y → R is some function.

Proof. To see this, suppose v ∈ kerαx. Then of course, ψ∗αx(v) = 0. This leaves only a
1-dim subspace of TxY on which ψ∗α is nonvanishing. Since α is only nonvanishing on this
subspace, we see that ψ∗αx = Cxα; some nonzero constant Cx. Then as x varies, we see Cx
can vary however you like so long as it is always nonzero. Thus, ψ∗α = ehα for some function
h : Y → R.

Let’s go back to our symplectic setting and make a few other remarks about the Liouville
field X. If ψt is the flow of X, then we have that

d

dt
ψ∗tω = ψ∗tLXω = ψ∗tω.
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Thus, ψ∗tω = etω. This means that the Liouville flow exponentially expands volume. We will
also later see in detail why we ask that X be outward pointing in the case that Σ = ∂M . But
the short answer is that this gives us a holomorphic pseudo-convexity. The Floer trajectories
will not be allowed to have a tangency point on Σ (this keeps them bounded away from Σ).

3.2 Back to Reeb Vector Field

Let’s consider closed orbits of arbitrary period on a contact type level Σ. If we restrict ω to
Σ, it has a 1-dim kernel for dimension reasons on which λ doesn’t vanish. To see this, just
consider R4 with symplectic form ω = dw ∧ dx + dy ∧ dz and take the hypersurface Σ = R3

with coordinates (w, y, z). Then note that restricted to Σ, ω(∂w, ·) = 0 because we have no x
directions; so ∂w ∈ kerω|TΣ. However, the Liouville vector field X is transverse to Σ and can
be thought of being in the x direction in a neighborhood of Σ. So then λ = ιXω is proportional
to dw and thus, does not vanish on kerω|TΣ = 〈∂w〉.

Now, if Σ is a regular level of an autonomous Hamiltonian H, then XH ∈ kerω|TΣ and
λ(XH) 6= 0. Just like before, the Reeb vector field XR of Σ satisfies two properties: XR ∈
kerω|TΣ and λ(XR) ≡ 1. An orbit of XR is often called a characteristic.

Let ϕt be the flow of the Liouville field X. Then a neighborhood V of Σ is foliated by
hypersurfaces {ϕt(Σ)}t∈(−δ,δ) for δ > 0 small enough. In view of ϕ∗tω = etω, we can make a
coordinate change via a symplectomorphism:

Ψ : Σ× [1− δ, 1 + δ]→ V ; Ψ(p, S) = ϕlog(S)(p).

Observe that Ψ∗λ = S · λ| where λ| means λ restricted to Σ. The reason for doing this is to
realize X as ∂/∂S in a neighborhood of Σ. Then, observe that if H : Σ× [1−δ, 1+δ]→ R is our
Hamiltonian which only depends on S; i.e. H(p, S) = h(S), then we can relate XH with XR:
dH(∂S) = dh(∂S) = ω(XH , ∂S); since X = ∂S in this neighborhood, then h′(S) = dh(∂S) =
ω(XH , ∂S) = −λ(XH). So λ(XH) = −h′(S) while λ(XR) ≡ 1. Since both XH and XR are in
the 1-dim kernel of ω|TΣ, XH and XR are linearly dependent and in fact, XH = −h′(S)XR.

In general, even if H is not of this special type, we can still say that the (closed) orbits of
the flows of XH and XR are in 1-1 correspondence since the two vector fields are linearly de-
pendent. This is remarkable because so long as H realizes Σ as a regular level, the Hamiltonian
dynamics only depend on Σ and not on H. Of course, the characteristics foliate Σ; that’s just
a consequence of the existence and uniqueness of integral curves from basic ODE.

3.3 Stein and Weinstein Domains

This discussion follows McDuff-Salamon’s Introduction to Symplectic Topology.
A generalized Morse function f : W → R is a smooth function in which all its critical

points are either nondegenerate or embryonic; i.e. p ∈ Crit f is embryonic if there are coor-
dinates where f = p + x3

1 −
∑k

i=2 x
2
i +

∑n
i=k+1 x

2
i . Sometimes, these are called birth-death

singularities.

Definition 3.2. A Weinstein manifold is a quadruple (W,ω,X, f), consisting of a non-
compact connected symplectic manifold (W,ω) without boundary, a generalized Morse function
f : W → R that is bounded below and proper, and a complete Liouville vector field X on W
that satisfies:

1. The inequality df(X) > 0 holds on W \ Crit f .

2. Choose a Riemannian metric on W . Then every critical point of f has a neighborhood U
in which the inequality df(X) ≥ δ(|X|2 + |df |2) holds for some δ > 0. This assertion is
independent of metric.
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Note that these conditions basically makes X a pseudogradient field of f . The second means
that X vanishes at critical points of f and the first means that f always changes positively
along X (we view X as an operator acting on f : as “directional derivative”).

A Weinstein domain is also a quadruple as above but (W,ω) is a compact connected sym-
plectic manifold with boundary, f has no critical points on the boundary and in fact, ∂W =
f−1(max f). The Liouville vector field satisfies the two conditions above.

It can be shown that a Weinstein structure on W can always be perturbed such that f is
Morse. Assuming that f is Morse, X is a pseudogradient field and so we can form stable and
unstable manifolds of critical points of f using the flow of X. Let φt denote the flow of X and
p ∈ Crit f . Then define Λp := {q ∈ W : Iq = R, limt→∞ φt(q) = p} as the stable manifold of
p. Liouville vector fields enlarge the symplectic form exponentially yet Λp is invariant under
the flow of X and in fact, the flow converges to p. This means that ω must vanish on Λp; i.e.
Λp is an isotropic submanifold and hence, of dimension ≤ n = 1

2
dimW . This tells us that the

homology of W is nontrivial only up to half the dimension. In particular, when dimW ≥ 4,
∂W is connected.

Definition 3.3. A function f : W → R on a complex manifold (W,J) is called plurisubhar-
monic if the 2-form ωf := −d(df ◦ J) satisfies ωf (v, Jv) > 0 for all nonzero v ∈ TW .

Any smooth function will make ωf of type (1, 1) and so will satisfy ωf (J ·, J ·) = ωf . So the
taming condition is enough to make ωf compatible with J . If f is a plurisubharmonic Morse
function, then the unstable manifolds are ωf -isotropic and so its Morse critical points have
indices up to middle dimension only. Moreover, if u : Σ → W is a J-holomorphic curve, f ◦ u
is subharmonic and cannot have an interior maximum. This means that (W,J) does not have
any nonconstant J-holomorphic curves defined on closed Riemann surfaces. I’m not sure if we
really need that W is a complex manifold; can we take it to be almost complex?

Definition 3.4. A Stein manifold is a connected complex manifold (W,J) without boundary
that admits a plurisubharmonic function f : W → R that is bounded below and proper. A Stein
domain is a complex manifold (W,J) with boundary that admits a plurisubharmonic function
f without critical points on ∂W and satisfies ∂W = f−1(max f).

One of the key properties of Stein manifolds is that they can be viewed as complex subman-
ifolds of CN that are closed as subsets. One may take f(z) = |z|2 to be the plurisubharmonic
function. The equivalence of these two definitions was proved by Hans Grauert in 1958. Eliash-
berg proved that every Weinstein manifold admits a Stein structure and every Stein manifold
admits a Weinstein structure.

3.4 Affine Varieties

From the above discussion, since affine varieties are the zero sets of some finite number of
polynomials in CN , the ones that are smooth and closed as subsets can be viewed as Stein
manifolds. Indeed, in the GAGA set of analogies, Stein manifolds correspond to affine varieties.

In some of Mark’s papers, he shows that all affine varieties can be compactified to Liouville
domains (need to add in a contact boundary). However, not all Liouville domains admit contact
boundary which themselves admit Boothby-Wang bundles and indeed, not all affine varieties
admit Boothby-Wang bundles either. For example, if we remove a normal crossing divisor
from CP n, as we approach the singularity, we do not have a Boothby-Wang model.

However, consider a smooth normal divisor D in CP n. It is a symplectic hypersurface
and so there is a tubular neighborhood theorem which says that the normal bundle νD is a
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(real rank 2) symplectic vector bundle. Take the sphere bundle: S(νD). One can show that
this bundle admits a Boothby-Wang structure and serves as the contact boundary of the affine
variety which is formed simply by removing D. As we move towards infinity, we’re moving
towards D. In that situation, the S1 fibers collapse.

3.5 Another View

Consider a subspace W ⊂ (V 2n, ω) of a symplectic vector space. The symplectic complement
of W is the subspace W ω := {v ∈ V : ω(v, w) = 0,∀w ∈ W.}. W is isotropic if W ⊂ W ω,
coisotropic if W ω ⊂ W , symplectic if W ∩W ω = 0, and Lagrangian if W ω = W .

One can show that coisotropic subspaces are always of at least dimension n while isotropic
subspaces are at most dimension n when one uses the fact that dimW + dimW ω = dimV .
A submanifold Q ⊂ (M,ω) is given one of these adjectives if for each q ∈ Q, the subspace
TqQ is that adjective in TpM . It is shown in McDuff-Salamon that if Q is coisotropic, then
for each p ∈ Q, TpQ

ω is an isotropic subspace and in fact, TQω is integrable. This means
that coisotropic manifolds of dimension n+ k are foliated by isotropic leaves. When the leaves
are submanifolds, they are then of dimension n − k. In such a situation, we let p ∼ q if they
lie in the same leaf. Under a regularity condition, Q/ ∼ is a smooth manifold and inherits a
symplectic form from M .

One can quickly show that any hypersurface Σ ∈ M is a coisotropic submanifold. If it is
regular, then it has 1-dim isotropic leaves. In the case that (Σ, α) is a contact hypersurface, we
have that the leaves coincide with the Reeb chords. Compare this to Boothby-Wang fibrations
which do not refer to any symplectic filling of Σ. When a Boothby-Wang fibration Σ → B
exists, there is a symplectic integral class on B. This B coincides with the Q/ ∼ as above.

In the situation with (M,dλ) being a Liouville domain, whenever we have a Hamiltonian
H that has Σ = ∂M as a regular level set and XH is proportional to the Reeb vector field as
described above, we have a Hamiltonian action of S1 on Σ. Let’s suppose the Reeb chords are
all homeomorphic to S1; so Σ is a regular coisotropic contact submanifold of M . Then, we
have a moment map description where µ = H. Let’s suppose µ−1(0) = Σ. Then the symplectic
quotient µ−1(0)/S1 coincides with Q/ ∼ where Q = Σ.

4 Symplectic (Co)homology

For the details of the definition of the symplectic (co)homology groups, consult Oancea’s paper.
I would just like to make a few remarks some of which are specific to Viterbo’s setup.

Let M̂ = M ∪∂M×{1} ∂M × [1,∞). Let ω̂ equal ω on M , and d(Sλ|) on the rest. The gluing
comes via the diffeomorphism induced by the Liouville flow. This new symplectic manifold is
called the symplectic completion of M .

The admissible Hamiltonians are of the type Hµ with µ > 0. Hµ ≡ 0 on M and only
depends time and on the radial variable S of the cylindrical end (doesn’t depend on p ∈ ∂M).
We would like Hµ to just be linear in S with slope µ once S is larger than 1, say, 3/2. Between
1 and 3/2, we’ll like Hµ to be convex. Anyways, the Hµ are linear at infinity. However, in
practice, we perturb the Kµ slightly so that Kµ < 0 on M \ ∂M .

We put a partial order where H ≺ K if H ≤ K in the neighborhood of the boundary.
As usual the action functional is defined on contractible loops. If γ is such a loop, γ̄ is a

capping disk; we’ll assume that M has the properties needed to make the action functional
well-defined:

AH(γ) = −
∫
D2

γ̄∗ω −
∫
S1

Ht(γ(t)) dt
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Then, we define

FCk
(a,+∞)(H, J) =

⊕
Z〈x〉

where the generators are critical points of AH with Conley-Zehnder index −k and action greater
than a. FH∗(a,+∞)(H, J) is just the cohomology and

FH∗(a,b)(H, J) = FH∗(a,+∞)(H, J)/FH∗(b,+∞)(H, J).

We then define FH∗(a,∞)(M) by taking two inverse limits of (H, J) and b→∞ (the order
doesn’t matter here; the inverse limits commute). That is, we take Hamiltonians with steeper
and steeper slope and bigger and bigger range of action.

Note that when a < 0, the Floer homology is independent of a. This is because our cofinal
family of Hamiltonians, when we perturb them slightly will be slightly negative on M , say −δ
for small δ > 0. But in the inverse limit, we may take δ → 0. So then the action of a constant
orbits, say γ0, depends on

∫ 1

0
Ht(γ0) dt→ 0.

One important thing to note is that unlike the closed case, we need a C0 bound which
ensures that for fixed limiting orbits, the Floer trajectories stay in a compact set. If this
weren’t the case, we could have that ∂2 6= 0 or other pathological situations.

Another note is that we could have defined this for homology. The direct limit is an exact
functor while inverse limit is only left exact. Thus, if we use homology, the Künneth formula
is valid with any coefficients but in cohomology, it holds only for fields.

Suppose Kµ is a Hamiltonian. Note that the 1-periodic orbits of Kµ are the constant orbits
on the interior of M and the closed characteristics on ∂M with action at most µ. How does
one obtain the C0 bounds which keep the Floer trajectories within a compact set?

We note that for generic µ, there are no characteristics with period µ and thus all the
1-periodic orbits of Kµ are in a neighborhood of M . To see why, recall that on ∂M × [1,∞),
XKµ = −k′(S)XR where Kµ ≡ k(S) on the cylindrical end and when S � 1, k′(S) = µ. So for
S � 1, 1-periodic orbits of XKµ are precisely the µ-periodic orbits of XR. For generic µ, there
are no such orbits. And so all the 1-periodic nonconstant orbits must be found in ∂M × [1, σ)
where σ is the first point where k′(S) = µ. So all orbits of XKµ are found in this neighborhood
of M : M ∪ ∂M × [1, σ).

Thus, if a Floer trajectory connecting 1-periodic orbits were to leave the neighborhood, it
would have to loop back and thus, have a interior tangency with some slice ∂M × S0. But this
phenomenon is forbidden, by a maximum principle argument (see p. 14 of the paper). This
relies on the Liouville field being outward pointing.

Let’s demonstrate this first with a toy model. We begin with a definition:

Definition 4.1. Let J be an almost complex structure compatible with the symplectic form ω.
A hypersurface Σ ⊂ M is J-convex if it can be locally written as the regular level set of a
plurisubharmonic function; i.e. a function ϕ : M → R which satisfies ddcϕ < 0 where
dc = J∗d.

Remark . Compare the definition for plurisubharmonic here and from before.

Lemma 4.2. Let Σ ⊂M be a J-convex hypersurface and ϕ a local function of definition. Then
no J-holomorphic curve u : (D2, i)→M can have an interior strict tangency point with Σ; i.e.
ϕ ◦ u cannot have a strict local maximum.

Proof. Here’s the simple argument. Let z = s + it be complex coordinates of D2 and J0 = i,
the standard complex structure on the disk. Let f = ϕ ◦ u. We note that dcf = df ◦ J0. Now,

df =
∂f

∂s
ds+

∂f

∂t
dt.
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df(J∂s) = df(∂t) = ∂f/∂t and df(J∂t) = −df(∂s) = −∂f/∂s. From this, we can deduce that

dcf =
∂f

∂t
ds− ∂f

∂s
dt and ddcf =

∂2f

∂t2
ds ∧ dt− ∂2f

∂s2
dt ∧ ds = −∆(ϕ ◦ u)ds ∧ dt.

More over, the J-holomorphicity of u implies that ddcJ0(ϕ◦u) = dJ∗0u
∗dϕ = du∗J∗dϕ = u∗ddcJ0ϕ.

Since ϕ is plurisubharmonic, then ∆(ϕ ◦ u) ≥ 0. Then f = ϕ ◦ u satisfies the mean value
inequality which means it cannot obtain a strict interior maximum.

f(z0) ≤ 1

πr2

∫
∂B(z0,r)

f(z) dz.

Then, here is the more relevant lemma to Floer theory.

Lemma 4.3. Any solution u : (D2(0, 1), i)→ ∂M × [1− ε,∞) of the Floer equation:

us + Jut −∇H(s, t, u(s, t)) = 0

with J a standard almost complex structure, H(s, t, p, S) = h(s, t, S) and ∂2h
∂s∂S
≥ 0 cannot have

a strict interior tangency with some slice ∂M × {S0}.

5 (Wrapped) Lagrangian Floer Homology

Much of this is from McLean’s paper Affine Varieties, Singularities and the Growth Rate of
Wrapped Floer Cohomology. Let’s consider Liouville domains (M,ω) where the boundary is
our contact type hypersurface. We will try to be consistent with notation, letting λ = ιXω and
θ = λ|∂M . Let M̂ be the completion and S be the coordinate for [1,∞) on the cylindrical end.

Definition 5.1. A (possibly non-compact) properly embedded submanifold of L ⊂ M̂ is said to
be an exact Lagrangian which is cylindrical outside M if

• it is of half the dimension of M̂ ,

• θ|L = dfL for some smooth fL : L→ R where fL = 0 outside M

• the vector field ∂s is tangent to L in the cylindrical end [1,∞)× ∂M .

We say that fL is a function associated to L. An admissible Lagrangian is an oriented
exact Lagrangian which is cylindrical outside M with a choice of spin structure.

An example of an exact Lagrangian which is cylindrical outside M may look like products of
Legendrians with R on the cylindrical end. Since Legendrians are transverse to the Reeb vector
field, they are transverse to the fibers of the Boothby-Wang fibers. Let’s take the definition
of admissible Hamiltonian H to mean linear outside a compact set containing M . Inside, of
M , H could behave in any number of ways. We then see that the orbits of XH outside of M
are proportional to the orbits of XR and so on the cylindrical end, the Lagrangians are also
transverse to any admissible Hamiltonian vector field.
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5.1 The Action Functional

Normally, when defining Lagrangian Floer homology HF∗(L0, L1) for two Lagrangians L0, L1,
we form a chain complex using intersection points in L0 ∩L1 where we require the intersection
to be transverse. The differential is then defined by counting J-holomorphic strips u; that is,
solutions of ∂̄Ju = 0.

However, we often choose to perturb our situation by a (time-dependent) Hamiltonian

Ht : S1 × M̂ → R because, for example, L0, L1 might not intersect transversally but φHt1 (L0)
and L2 do intersect transversally. On the cylindrical end, for example, if Ht is admissible, then
taking L = L0 = L1, we can consider intersection points φHt1 (L) ∩ L. When Ht is admissible,
it is also rather inaccurate to call it a perturbation since these are not small changes but large
changes.

Remark . We will not always be careful about including the variable t but recall that we are
considering time dependent Hamiltonians.

With that said, let L0, L1 be two admissible Lagrangians with associated functions f0, f1.
Let p ∈ φH1 (L0) ∩ L1. Let γ(t) = φHt (φH−1(p)) be a path that starts on L0 and ends at φH1 (L0).
Here, I’ve written φH−1 to mean (φH1 )−1. Note that γ(1) = p. Then the action of p is given by

AH(p) = f1(γ(1))− f0(γ(0))−
∫
γ∗θ +

∫ 1

0

Ht(γ(t)) dt.

Note that if we define AH on paths ending at intersection points p, then these intersection
points are in 1-1 correspondence with critical paths of AH . When looking at the cylindrical
end, these paths are what we’ve called Reeb chords above.

We may obtain a chain complex C∗[a,b](L0, L1, Ht) which is the free K vector space generated

by intersection points φH1 (L0) ∩ L1 whose action is in [a, b]. If we do not write [a, b], what we
mean is that a = −∞, b = +∞.

It is possible to assign indices to the intersection points: |p| ∈ Z2; this makes C∗[a,b](L0, L1, Ht)
a Z2 graded K vector space. We could go into more detail with gradings but we do not have
much need for them here. Suffice to say, the spin structures on the Lagrangians are quite
important though.

5.2 The Floer Equation and Differential

To define the differential, we need to consider cylindrical almost complex structures.
These are simply complex structures J compatible with ω and outside a large compact set,
θ ◦ J = dS. So for example, dS(∂S) = 1 = θ(XR). So we need J∂S = XR. For all vector fields
V ∈ ker θ, we have dS(V ) = 0 = θ(JV ). So J leaves ker θ invariant.

Let Jt be a smooth S1 family of cylindrical ACS. We define M(p, q,Ht, Jt) to be the set of
smooth maps u : Rs × [0, 1]t →M satisfying:

∂̄Jtu := ∂su+Jt∂tu = JtXHt ,

u(s, 0) ∈ L0,u(s, 1) ∈ L1,

u(s, t)→ p(t) as s→ −∞ and u(s, t)→ q(t) as s→ +∞.

Alternatively, we could have u satisfy ∂̄Jtu = 0 and have boundary conditions u(s, 0) ∈
φH1 (L0), u(s, 1) ∈ L1 instead. As usual, there is a free R action on M(p, q,Ht, Jt). The spin
structures guarantee orientations on M(p, q,Ht, Jt) =M(p, q,Ht, Jt)/R. It can be shown that
when Jt is generic and |p| = |q|+ 1, there is a stratification by j, the dimension:

M(p, q,Ht, Jt) =
⊔
j

Mj
(p, q,Ht, Jt)
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We define the differential of the chain complex by considering only M0
(p, q,Ht, Jt):

∂(q) :=
∑

|p|=|q|+1

#M0
(p, q,Ht, Jt) · p.

Claim: The differential increases the action and so the chain complex has a natural filtration
given by p 7→ AH(p). Moreover, ∂2 = 0.

As usual, we let HF ∗[a,b](L0, L1, Ht) be the homology of the above chain complex. If H1
t , H

2
t

are two admissible Hamiltonians with H1
t ≤ H2

t for all t ∈ S1, then we can define continuation
maps HF ∗[a,b](L0, L1, H

1
t )→ HF ∗[a,b](L0, L1, H

2
t ).

These are constructed in the usual way. We take a homotopy (a path in the space of
Hamiltonians and ACS pairs) Γ(s) = (Hs,t, Js,t) which connects (H1

t , J
1
t ) to (H2

t , J
2
t ). Define

a chain map ΦΓ : C∗[a,b](L0, L1, H
1
t , J

1
t ) → C∗[a,b](L0, L1, H

1
t , J

1
t ) which is defined by counting

solutions to a newly parametrized Floer equation:

∂su+ Js,t∂tu = Js,tXHs,t

It can be shown that ΦΓ ◦ ∂1 = ∂2 ◦ΦΓ and so it descends to a map on homology. Moreover, it
can be shown that the choice of homotopy does not matter (so long as we pass through generic
Jt). Thus, I think we can take a “straight line” homotopy between H1 and H2 in the sense
that since they’re linear at infinity, we can just change their slope. Of course, more needs to
be done in a neighborhood of M .

Now suppose that φH1 (L0) does not intersect L1 transversally and that a, b are not in the
image of AH . Then we define HF ∗[a,b](L0, L1, Ht) to be the direct limit

lim−→
H′
t

HF ∗[a,b](L0, L1, H
′
t)

where H ′t < Ht are admissible Hamiltonians so that φH
′

1 (L0) and L1 intersect transversally and
the directed system is taken with respect to the ordering ≤. Sometimes one cannot find such
admissible Hamiltonians H ′t which C∞ converge to Ht. In this case one needs to have more
general Hamiltonians.

5.3 Two Views

It bears repeating that there are at least two equivalent views for thinking about Lagrangian
Floer homology. The generators of the chain complex can either be thought of as intersection
points of φH1 (L0) ∩ L1 or critical paths of the action functional AH (which are called Reeb
chords).

To define the differential of the chain complex, we study strips. We can either consider
strips u that satisfy ∂̄Ju = 0 with boundary conditions on φH1 (L0) and L1 or strips u that
satisfy ∂̄Ju = JXH with boundary conditions on L0 and L1.

5.4 Properties of HF

1. The rank of HF ∗[a,b](L0, L1, Ht) is a lower bound on the the number of intersection points

of φH1 (L0) ∩ L1 whose actions are in [a, b] when the intersections are transverse.

2. If a1 ≥ a2 and b1 ≥ b2 then there is a natural morphism:

HF ∗[a1,b1](L0, L1, Ht)→ HF ∗[a2,b2](L0, L1, Ht).
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We call such a morphism an action morphism. Composing two action morphisms
gives another action morphism. Similar properties hold for other intervals of the form
[a, b), (a, b]and(a, b). Such a morphism is an isomorphism if there are no intersection
points p ∈ φH1 (L0) ∩ L1 of action AH(p) in the interval [a2, b1] \ [a1, b2]. For −∞ ≤ a ≤
b ≤ c ≤ +∞ we have the following long exact sequence:

→ HF ∗(b,c](L0, L1, Ht)→ HF ∗[a,c](L0, L1, Ht)→ HF ∗[a,b](L0, L1, Ht)→

where the morphisms which aren’t connecting morphisms are action morphisms.

3. If H1
t ≤ H2

t , then there is a natural morphism HF ∗[a,b](H
1
t )→ HF ∗[a,b](H

2
t ). This is a con-

tinuation morphism and the composition of two such morphisms is also a continuation
morphism.

4. Continuation morphisms commute with action morphisms (need to arrange the intervals
and Hamiltonians).

5. Let c ∈ R be a constant. Then we have an isomorphismHF ∗(L0, L1, Ht)→ HF ∗(L0, L1, Ht+
c). If c > 0, the morphism is induced by the natural contiuation map. If c < 0, then it is
induced by the inverse of a continuation map.

5.5 Wrapped Lagrangian Floer Homology

We let H ≥ 0 be an admissible Hamiltonian with positive slope. By property 3, we have natural
continuation maps HF ∗(L0, L1, λ1H)→ HF ∗(L0, L1, λ2H) for λ1 ≤ λ2.

Definition 5.2. Define the wrapped Floer cohomology group of L0 and L1 to be

HW ∗(L0, L1, H,K) := lim−→
λ

HF ∗(L0, L1, λH).
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