
A Mathematical Viewpoint of Classical and Quantum
Mechanics

Sam Auyeung

February 8, 2022
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1 Introduction

I would like to discuss classical and quantum mechanics from a rather general mathematical
framework. The basic mantra will be, “Classical mechanics is mainly measure theory and
quantum mechanics is mainly operator theory (functional analysis).”

In physics, we typically care about at least three things: states, observables, and dynamics.
Physically, one might think of observables as things we can measure, states as being those a
set of variables describing a system which does not include anything about its history, and
dynamics is about how the system evolves over time. We’ll see that these three notions appear
in both CM and QM. And thus, it’s not so hard to mathematically translate from one to the
other once we have a basic framework.

2 Classical Mechanics

The general setting of classical mechanics takes place on a phase space which we’ll take to
be a Poisson manifold (M, {, }). We’ll also have a commutative algebra of observables
A = C∞(M,R), and a set of states S = P(M) which are all probability measures on M .

Recall that the Poisson bracket we care about works with A: {, } : A⊗A→ A. It satisfies:

1. Anticommutativity: {g, f} = −{f, g}.

2. Bilinearity: {af + bg, h} = a{f, h}+ b{g, h}, {h, af + bg} = a{h, f}+ b{h, g}.

3. Leibniz Rule: {fg, h} = {f, h}g + f{g, h}.

4. Jacobi Identity: {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.

Also, a symplectic form ω on M would induce a Poisson bracket. The Poisson bracket can
also be used to define Hamiltonian vector fields: XH(f) = {H, f}. Supposing we do have a
symplectic form ω, if the vector field gives us flows gt, we can see that gt preserves ω if and only
if {, } satisfies the Jacobi identity. Thus, in this way, the Jacobi identity has an interpretation.
Recall that if the manifold is compact, then we do have existence of flows.

Now that we have this general setting, how do we study a specific physical system? The
physical system is determined by choosing a Hamiltonian function H :M → R. This is enough
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to completely determine the behavior of the system once we set the equations of motion; i.e.
once we set the dynamics.

But before we get to that, what is a measurement? From physics, this is intuitive but
mathematically, it is a map A × S → P(R) (probability measures on R). The map is easily
defined: (f, µ) 7→ µf where if E ⊂ R is a Borel set, then µf (E) := µ(f−1(E)).

The expected value is Eµf =
∫

R λ dµf (λ). By Fubini’s theorem, this equals
∫
M
fdµ. Now,

the Dirac delta measures are called pure state and all other states are called mixed states.
It is a fact that µ is a pure state if and only if the variance of µf is zero, ∀f ∈ A. This makes
sense: classically, there should be no fuzzy uncertainty in our measurements, unlike in quantum
mechanics. Note that for a pure state, the expected value is simply the value of the function
at the point on which the measure is supported.

Now let’s turn to the dynamics. It turns out there are two equivalent formulations of the
dynamics: a Hamiltonian and Liouville formulation.

For the Hamiltonian situation, we have two equations:

dµ

dt
= 0,

df

dt
= {H, f}.

The first equation tells us that the measure µ is independent of time.
Alternatively, if we assume Hamiltons euqations are solvable for all time, we can define a 1-

paramter group of diffeomorphisms on M : gt. Additionally, if we’re working with a symplectic
manifold (M,ω), then ωn gives us volume measure dx = ωn. By Radon-Nikodym, dµ = ρ dx
for some ρ. Our equations of motion are therefore:

df

dt
= 0,

dρ

dt
= −{H, ρ}.

3 Quantum Mechanics

Now that we’ve seen the setting for classical mechanics, let’s consider the following theorem:

Theorem 3.1 (Gelfand). “Every” commutative (Banach) R-algebra is an algebra of continuous
functions on some compact topological space.

Thus, barring the technicalities of saying what we mean by “every,” we see that in some
sense, if our algebra is commutative, we’re already in the realm of classical mechanics. This
hints to us that in order to do quantum mechanics, we should look at noncommutative alge-
bras. Since in the classical case, our A is ∞-dimensional, we ought to consider ∞-dimensional
noncommutative algebras.

On first attempt, we might consider something like A = L(H), the space of bounded
operators on a Hilbert space H, over C. But we’ll quickly see, by once again considering the
classical picture, that we’ll want unbounded operators. For consider the simplest phase space:
T ∗R with coordinates (p, q). These coordinates are unbounded. So we might want to take A to
be the space of all operators, including unbounded ones, on a Hilbert space H. But we’ll find
later that we will, once again, want to revise what counts as our observables.

Let us turn our attention towards defining something like our Poisson bracket, namely a Lie
bracket. Take A,B ∈ A and define [A,B] := AB −BA, the commutator. This [, ] satisfies the
Jacobi identity if and only if the operator product is associative. So this tells us that associa-
tivity is actually quite fundamental even though we often take it for granted when doing algebra!
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3.1 Observables

From here, I will try to present what’s called the Dirac-von Neumann axioms of quantum
mechanics. We already have some view of what we might want A to be. But we’ll see that we
actually want another condition on our operators. First, let H be a Hilbert space over C; we’ll
assume this is given to us (see the “Quantization” section below for a bit more on the origins
of H). Let A be the space of self-adjoint operators on H; this includes unbounded operators.
This is an “algebra” of quantum observables.

However, it’s not really an algebra! If A and B are self-adjoint, (AB)∗ = B∗A∗ = BA.
Thus, the product AB is self-adjoint if and only if A and B commute; this obviously doesn’t
always happen. In fact, what does it even mean to commute? These operators are unbounded!
We’ll discuss this a bit more later but for now, to address this issue of it not being an algebra,
we can define a Lie bracket: [A,B] := i(AB − BA). Then, if A,B are self-adjoint, [A,B]∗ =
−i((AB)∗ − (BA)∗) = −i(BA − AB) = i(AB − BA) = [A,B]. We can also define a Poisson
bracket {A,B}ℏ = i

ℏ(AB −BA) called the quantum bracket. So we have a Lie algebra.

3.2 States

We’ll let S be the space of compact, positive, trace-class operators with trace equal to 1. As
it turns out, the notion of self-adjointness is rather tricky in ∞-dimensions. For example, the
unbounded operator A = i d

dx
is not defined on all of L2(R) but is defined on a dense subset.

However, we do find it to be self-adjoint once we make clear what self-adjointness means.
A natural question to ask now is: “Why do we consider self-adjoint operators?” The answer

is simply that we have von Neumann’s spectral theorem. Essentially, it tells us that the self-
adjoint operators on a Hilbert space are in 1-1 correspondence with projection-valued measures
defined on the Borel sets of R. A projection P : H → H is a bounded operator satisfying
P 2 = P, P = P ∗. A projection-valued measure simply gives us a projection instead of a real
number when we input a Borel set.

This is how we go about assigning a self-adjoint operator A a projection-valued measure PA.
Let λi be the eigenvalues (with multiplicity) of A and Vi the corresponding eigenspaces. Let
PVi : H → H be projection onto Vi. Then A =

∑
λiPVi . We can then let PA(E) =

∑
λi∈E PVi .

But the theorem doesn’t stop here. It gives us criterion for determining whether f is in the
domain of A. It turns out that f ∈ D(A) if and only if∫

R
λ2 d(PA(λ)f, f) <∞.

This condition basically tells us that there is some L2 thing to check. Moreover, von Neumann
showed that once we know f ∈ D(A), we know that

Af =

∫
R
λ dPA(λ)f.

Moving on, a compact operator is a bounded operator which maps the unit ball to a compact
set. A is a positive operator if (Af, f) ≥ 0 for all f ∈ H. This implies that A is self adjoint
because, being a real value, (f, Af) = (Af, f) = (Af, f). It may be enough to check this on
eigenvectors because by the Hilbert-Schmidt decomposition (see the next bit), we can describe
A.

To discuss what it means to be trace-class will require a bit more discussion. Suppose we
have a compact, self adjoint operator A. The Hilbert-Schmidt decomposition theorem tells us
that we can decompose A by projections:

A =
N∑
n=1

λnPn
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where N can equal ∞. The theorem also tells us that A has a pure, discrete spectrum. This
means that it has at most countably many non-zero eigenvalues of finite multiplicity; moreover,
they should accumulate at 0. On the other hand, we do allow for the possibility that 0 has
infinite multiplicity as an eigenvalue.

Now, A is trace-class if
∑

|λn| <∞. We define the trace of A to be
∑N λn. It is nontrivial

result that this trace can be described a different way. For any orthonormal basis {ei}∞, we
have

trA =
∞∑

(Aei, ei).

This relates a spectral version of trace with a “matrix version.” It turns out that the space
of trace-class operators is a 2-sided ideal in the Banach algebra of bounded operators on H:
L(H).

3.3 Measurement

Now we can define mathematically what a measurement is. It is simply the map

A× S → P(R); (A,M) 7→ µA;µA(E) := tr(MPA(E)).

What is not simple, is giving a physical or philosophical interpreting of what it means to
measure. This is where one can get into a discussion of collapsing wave functions or multiple
worlds.

Also, one should check that µA is a measure because the projection measures are measures.
But the reason why 0 ≤ µA(E) ≤ 1 is because of the trA = 1 condition.

As in the classical setting,M gives a pure state ifM is projection onto some unit vector ψ.
Mixed states are just convex linear combinations of pure states. I think that some physicists
may call H the space of states or pure states for this reason.

3.4 Commutativity and Simultaneous Measurement

Let’s return to the issue of commutativity. If we have two unbounded self-adjoint operators
A,B, what should it mean for them to commute? We would have to make sure their domains
matched up somehow via restriction but that would be a pain. What we’ll mean then is that
A,B commute if PA(E) and PB(E

′) commute for all E,E ′.
It turns out this second condition holds if and only if exp(iuA) and exp(ivB) commute for

all u, v ∈ R. Note, by the way that each of these is a unitary operator because self adjoint
operators have real eigenvalues; i.e. U is unitary if UU∗ = U∗U = id. Now, in finite dimensions,
UU∗ = id ⇒ U∗U = id. But not so in infinite dimensions.

Why do we care about commutativity? The reason is that we may have several observables
A1, ..., An and we want to assign a probability measure to all of them simultaneously. i.e. we
want to measure all of these observables at once. It turns out, we can define the measure

µA1,...,An(E1 × ...× En) = tr(MPA1(E1)...PAn(En)).

But this won’t be a true measure unless all the projections commute. Thus, we need commuta-
tivity for simultaneous measurement. This is reminiscent of the fact that we can simultaneously
diagonalize if we have commuting operators.
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3.5 Dynamics

At last we turn to the dynamics of quantum mechanics. We’ll find that on a formal level, there is
no difference from classical mechanics. We’ll see that the equations look nearly identical to the
classical mechanics equations! We have two formulations which also depend on a Hamiltonian.
Assume H ∈ A0 (bounded operators in A) is given; it will be independent of time so that we
may assume that energy is conserved and thus, we’re in a closed system. The equations are:

1. Heisenberg formulation:
dM

dt
= 0,

dA

dt
= {H,A}ℏ

2. Schrödinger formulation:
dA

dt
= 0,

dM

dt
= −{H,M}ℏ

We might need A,M to be bounded operators as well, at least, if we want the equations to
be easier to study. But the main point of interest is that these equations are linear whereas in
classical mechanics, they are nonlinear ODES. This is of course because the bracket is bilinear
and the operators are linear.

However, do not be deceived! Despite the linearity of the equations, they are not easy to
fully understand. To see why, let us study this more closely. As usual, the dynamics should
be given by some 1-parameter group of diffeomorphisms; they should tell us how the system
evolves over time. Let’s consider the Heisenberg setting and let U(t) = exp(− i

ℏtH); it is a
1-parameter group of unitary operators. Let A0 = A|t=0.

Let’s take a guess at a solution. Let A(t) = U(t)−1A0U(t).

Accepting this, then U ′(t) = − i
ℏHU . Note that since U is some exponential of H, then H

commutes with U and also U−1. Therefore, A′(t) = i
ℏ(HA − AH) = {H,A}ℏ. Thus, one sees

that A = U−1A0U is a solution and in some sense, we’ve “solved” the equations.
But it’s no good if we don’t understand the solution and the difficulty lies in understanding

U . To understand it, we basically need a full understanding of its spectrum. Questions to ask
include whether the spectrum is discrete, bounded, etc.

The Schrödinger formulation is quite similar and we’ll have M(t) = U(t)M0U(t)
−1. In any

event, these two formulations are equivalent which is quite a profound claim. It means that on
one side, we can fix our states and let the observables vary or we can fix our observables and
let the states vary. Mathematically, we’re saying: µA(t)(E) = µ(t)A(E). The left hand side is
equal to tr(M0PA(t)(E)) while the right hand side is equal to

tr(M0U(t)
−1PA0(E)U(t)) = tr(U(t)M0U(t)

−1PA0(E))

= tr(M(t)PA0(E))

The first equality here comes from the cyclic property of trace.
Claim: When M0 is a pure state; i.e. M0 = Pψ0 where ψ0 ∈ H, then M(t) = Pψ(t) where
ψ(t) = U(t)ψ0. In other words, pure states just get ”rotated around.”

Proof. It’s clear that M(t)ψ(t) = U(t)M0U(t)
−1U(t)ψ0 = U(t)M0ψ0 = U(t)ψ0 = ψ(t). The

penultimate equality comes by the fact that projecting ψ0 onto ⟨ψ0⟩ does nothing. Now let
ϕ ⊥ ψ(t). This means that U(t)−1ϕ ⊥ ψ0 because unitary operators preserve the inner product.
This means that M(t)ϕ = UM0U

−1ϕ = 0 since projecting an orthogonal vector onto ⟨ψ0⟩ does
nothing. Thus, M(t) = Pψ(t).
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Important Note: This discussion is for closed systems. We have a time-dependent unitary
operator which gives us a forward time-evolution and we could also run it backwards. But if
this were an open system which interacts with the environment, we should not have a way to
invert the time evolution. It is like dropping a glass of water onto the ground. We do not
expect it possible for the glass to reform, for the water to be unspilled, and for the whole thing
to travel back to ones hand.

4 Schrödinger’s Equations

The time evolution of pure states is determined by the time dependent Schrödinger equation.
Letting ψ = ψ(t, x), the equation is:

iℏ
dψ

dt
= Hψ.

Note that if ψ(t) = U(t)ψ0, then dψ/dt = − i
ℏHU(t)ψ0 = − i

ℏHψ. So a solution to the time
dependent Schrödinger equation comes from unitary evolution of a vector and the ψ(t) gives
us pure states M(t) = Pψ(t).

On the other hand, if we have a stationary pure state, M(t) = M0 = Pψ0 , then we’ll find
that after normalizing ψ0, we can let ψ(t) = U(t)ψ0 = c(t)ψ0 where |c(t)| = 1. Therefore,
let c(t) = exp(− i

ℏλt) where λ ∈ R. Then, ψ0 determines stationary states if and only if
U(t)ψ0 = exp(− i

ℏλt)ψ0. If we apply the operator iℏ d
dx

to this last equation, we’ll get λψ0. Thus,
these stationary pure states are determined by ψ0 which are solutions to the time independent
stationary Schrödinger equation: Hψ0 = λψ0.

Indeed, the λ are eigenvalues and the ψ0 are eigenfunctions. These stationary states are
sometimes called bound states in physics.

One comment to make: the Schrödinger equation is a PDE; it has t and x variables. One
might ask; can we separate t and x to solve the equation? This is a common technique used
in PDE theory. The answer is essentially, yes, in quantum mechanics. But in quantum field
theory, when there are Lorenzian transformations that exchange space and time coordinates,
we are not able to do this.

One other comment to make: the Schrödinger equation can be derived from the following
assumptions:

1. m d
dt
⟨x⟩ = ⟨p⟩

2. d
dt
⟨p⟩ = −⟨V ′(x)⟩

3. [x, p] = iℏ

Here, ⟨x⟩, ⟨p⟩ mean the expectation value for position and momentum. So the first equation
looks like the classical Newtonian equation but with expectation values (quantum mechanics
should approximately return classical results). The second equation is similar since force is
given by F = −V ′(x) where V is a scalar potential. These two equations are called the
Ehrenfest equations. The last equation is just to say that x and p do not commute. On the
other hand, assuming noncommutativity and the Schrödinger equations, one can derive the
Ehrenfest equations.

5 Heisenberg Uncertainty Relations

We come now to one of the foundational principles in quantum mechanics. The Heisenberg
Uncertainty Principle is often stated loosely as saying: “The more accurately we know the
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position of a particle, the less accurate we know the momentum of the particle. And vice
verse.” We’ll see now that this principle is actually completely mathematical and not just a
feature of the physical world.

Let A,M be our observable and state. The expected value of the two is defined as:

⟨A|M⟩ =
∫ ∞

−∞
λdµA(λ).

It is a real value but can also be ∞. It turns out that if M = Pψ is a pure state, then
⟨A|M⟩ = (Aψ,ψ) if ψ ∈ D(A). Otherwise, we let it be ∞.

The variance of an observable is defined as:

σ2
M(A) = ⟨(A− ⟨A|M⟩ id)2|M⟩.

Of course, if ⟨A|M⟩ is infinite, we can’t do this but otherwise, we do. Also, this is always a
nonnegative value.

Theorem 5.1. If M = Pψ is a pure state and ψ is in all the relevant domains concerning
self-adjoint operators A,B, then

ℏ2

4
⟨{A,B}ℏ|M⟩2 ≤ σ2

M(A)σ2
M(B).

Proof. This proof is due to Hermann Weyl. We may assume that ⟨A|M⟩ = ⟨B|M⟩ = 0 (I think
because ψ is just a single vector). Now for any α ∈ R, we consider

0 ≤ ∥(A+ iαB)ψ∥2.

Expanding the right hand side, we have:

(Aψ,Aψ) + α2(Bψ,Bψ) + iα(Bψ,Aψ)− iα(Aψ,Bψ) =(A2ψ, ψ) + α2(B2ψ, ψ)

+ α(i(AB −BA)ψ, ψ)

= σ2
M(A) + α2σ2

M(B) + α(ℏ{A,B}ℏψ, ψ)

Thus, we see that we have the following inequality:

0 ≤ σ2
M(B)α2 + ⟨ℏ{A,B}ℏ|M⟩α + σ2

M(A).

This implies that the discriminant of the quadratic function in α must be nonpositive. Thus,

ℏ2⟨{A,B}ℏ|M⟩2 − 4σ2
M(A)σ2

M(B) ≤ 0

or
ℏ2

4
⟨{A,B}ℏ|M⟩2 ≤ σ2

M(A)σ2
M(B).

The main observation is: if A,B don’t commute, then the left hand side is positive and so there
must be some variance for both A and B. Moreover, if the variance of one is relatively small,
the variance of the other must be relatively large.
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6 Quantization

6.1 Preliminary Points

We begin in a classical mechanical system and we wish to make it quantum mechanical in some
sense. Before we discuss a more generalized theory, there are a few remarks to make. Suppose
we begin with a symplectic vector space (V, ω). To quantize this, we want to assign a complex
Hilbert space to (V, ω) and we wish this assignment to be as functorial as possible. Moreover,
if two wavefunctions differ by a constant phase, they give the same observable and hence, we
should quotient out the U(1)-action; the operator should reflect this. This amounts to asking
for a projective Hilbert space.

But what exactly does this functoriality wish mean?

1. We might request that the symmetries of the symplectic vector space V be represented
as unitary operators on the Hilbert space. So this means we want to find a projective
representation of the symplectic group. One way of constructing this is to take a splitting
of V ∼= L ⊕ L′, the sum of two Lagrangian subspaces. With respect to this splitting
(called a polarization), we may let the Hilbert space be L2 functions on L. It turns out
that the underlying projective space does not depend on the splitting. This statement is
equivalent to the existence of a projective unitary representation of the symplectic group,
called the metaplectic representation. The quantum Hilbert space is the underlying
complex Hilbert space of that representation.

2. Another interpretation of the functoriality request is to use a dual picture. Instead of
studying points of V and points in the corresponding Hilbert space H, we can study
functions and operators, respectively. Functions on a symplectic vector space form a
Poisson algebra. In this view, quantization should assign f ∈ C∞(V,R) to a self-adjoint
operator f̂ on H.

Naively, we might ask that the Poisson bracket is mapped to the commutator bracket.
But experience shows that it is best to introduce a parameter ℏ and work over formal
power series in ℏ. Then, we relax the request and only ask that the Poisson bracket is
mapped to the commutator bracket up to first order in ℏ.

With this preamble, let’s dive in. We have a phase space M with a Poisson bracket {, }
and algebra of classical observables A0 = C∞

c (M); here, we’re taking compactly supported
functions. Hence, we have a triple (M, {, }, A).

6.2 Geometric Quantization and Boothby-Wang Bundles

Here, let’s follow the dual picture for awhile and try a quantization with geometric flavor. If
(M,ω) is a symplectic manifold and f :M → C is a function (which determines the dynamics),
then let f̂ be an operator on L2(M,C). We let Xf be the ω-dual of f . Then f̂(ψ) := Xf · ψ =

dψ(Xf ). Then, if h := {f, g}, ĥ(ψ) = [Xf , Xg] · ψ. On the other hand, this is what [f̂ , ĝ] does

to ψ. So {̂f, g} = [f̂ , ĝ].
But note that this sends the constant function 1 to the zero operator. But the constant

function 1 is the identity element in the algebra and we would like to send it to the identity
operator. So let us try introducing an extra dimension. We’ll let π : Y → M be an S1-
bundle with a connection 1-form λ that has curvature π∗ω (hidden here is that we need ω
to be an integral cohomology class; this is basically equivalent to the existence of such a
bundle Y →M). Then Xf , an infinitesimal symplectomorphism, lifts to Y by an infinitesimal
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quantomorphism; this is a vector field that preserves λ. If (Y, λ) is a contact manifold, then
the Reeb vector field should do the trick.

Anyways, we lift Xf to obtain ξf = Xf ⊕ fξ where ξ is an infinitesimal generator of the
action of S1 on Y . If we consider a subspace of S1-equivariant maps ψ : Y → C and define

f̂(ψ) = ξf · ψ, then {̂f, g} = [f̂ , ĝ] still holds. Moreover, ξ1 = ξ and 1̂(ψ) = ξ · ψ = ψ because
of the S1-equivariance.

However, we are not finished with quantization yet because ψ should really only depend on
the configuration variables that make up half the dimension ofM . So the bundle Y →M which
mathematicians call a Boothby-Wang bundle, is known to physicists as a prequantization
bundle. This difficulty with the dimensions seems to be a rather major one in geometric
quantization. One attempt at resolving this is to find a Lagrangian foliation M → Q and
consider functions that only depend on Q. Such functions are called polarized. This cuts our
dimension by half and in the classical case of a phase space, the map is simply (q, p) 7→ q.

If (V, ω) is simply a symplectic vector space, the prequantized bundle is trivial: V ×S1 and
the connection is λ = α + 1

iz
dz where ω = dα and z = eiθ and hence, dz = izdθ ⇔ dθ = 1

iz
dz.

The simplest polarizations to take are linear Lagrangian subspaces.
This simple situation is nice but if we want to represent some 1-parameter family of sym-

plectomorphisms, we want the polarization to be invariant. But this hardly ever happens.
For example, the harmonic oscillator has Hamiltonian which rotates the Lagrangian subspace
(much like how we can rotate the polarization plane of light). For the harmonic oscillator,
there is a fix but in general, geometric quantization has not been successfully implemented in
all cases.

6.3 Formal Quantizaiton

Quantization of this triple is a map Qℏ : A
0 → A0

ℏ which goes from classical observables with
compact support to quantum observables. This A0

ℏ will be bounded self-adjoint operators on
some Hilbert space H.

Before getting into the properties we require of Qℏ, we make some remarks. First, A0 is
a Lie algebra with respect to {, } while A0 is a Lie algebra with respect to {, }ℏ := i

ℏ [, ] (the
commutator). It is important to note at this point that whatever properties Qℏ has, it cannot
be a Lie algebra morphism because if it were, then this would basically say that the classical
mechanics embeds into quantum mechanics (after some quotienting if needed); this is point (2)
addressed at the start of this section. Also, ℏ > 0 is usually a fixed value for physicists but for
mathematicians, this can be a parameter and thus, we get a family of maps Qℏ.

We now state the properties we require of Qℏ:

1. Qℏ is injective. On a physical level, we don’t want two different classical observables to
map to the same quantum observable.

2. Let A,B ∈ A0
ℏ. We may define the Jordan product: A ◦ B := 1

2
AB + BA (here,

we’re using operator product); this is commutative but not necessarily associative. Given
f, g ∈ A0, we require that

Q−1
ℏ

(
Qℏ(f) ◦Qℏ(g)

)
= fg.

3. For all f, g ∈ A0, we require that

lim
ℏ→0

Q−1
ℏ

(
{Qℏ(f) ◦Qℏ(g)}ℏ

)
= {f, g}.

This is known as the Correspondence Principle which Niels Bohr probably stated.
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These properties seem somewhat mysterious though one can see that they require Qℏ to
preserve product and bracket structures in some sense. We can also define a new multiplication
on C∞(M) using Qℏ. Let f, g ∈ C∞

( M). Then

f ∗ℏ g := Q−1
ℏ

(
Qℏ(f)Qℏ(g)

)
= fg +

ℏ
2
{f, g}+ {higher order terms}.

Thus, we see that we can define a new multiplication ∗ℏ which is a deformation of usual
multiplication of functions. This deformation even includes some data of the original Poisson
bracket.

Let’s talk more abstractly for a moment. Let A be a commutative algebra and At (t ≥ 0)
be a family of algebras which are isomorphic as vector spaces to At ∼= A ⊗ C[[t]] but with a
different multiplication: a ∗t b = ab + tm1(a, b) + t2m2(a, b) + t3m3(a, b) + ... We would like ∗t
to be associative. In such a setting, we call this family a deformation quantization. Note
that there is no Hilbert space involved, unlike the quantization we had from earlier. Therefore,
this deformation quantization is not properly “physical quantization” but is rather, a formal
quantization.

Regardless, the associativity actually implies that m1 is a cocycle (in some Hochschild
sense...). Now, we can ask ourselves a question: “Given an algebra of classical observables
and m1, a Poisson bracket, is it always possible to find a deformation quantization
where the multiplication is associative?”. Framed a different way, we’re given m1 and
we’ll like to find m2,m3, ... such that the multiplication is associative. Note that we’re not
doing this with reference to any Hilbert space. So we’re in the abstract setting.

It was long known that if our algebra A = C∞(M) comes from a symplectic manifold
(M,ω), it is possible. However, it wasn’t until 1997 when Maxim Kontsevich showed that this
is possible when (M, {, }) is a Poisson manifold. Not only did he show it was possible, he gave a
formula for the product which involves studying graphs and differential forms on configuration
spaces of finitely many points.

7 “Philosophy”

In this last section, we discuss a little bit of the “philosophy” of how we approach these physical
theories. I don’t mean philosophy in the academic sense. Quantum mechanics is fundamental
while classical mechanics can be seen as a limit of quantum mechanics in some sense (ℏ → ∞).
We might say that many quantum systems are simply “quantizations” of classical systems.
This means that we do some perturbation to make the algebra noncommutative. But there
are examples of quantum mechanical systems which do not arise via quantization of classical
systems. I’m not sure if Takhtajan meant this in a physical sense or mathematical. In any event,
this suggests that those quantum systems are more fundamental than the classical systems.
Moreover, quantization is much more of a mathematical notion than a physical notion at the
end of the day in which we attempt to move from a mathematically classical setting to the
quantum setting.
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