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1 Construction of Sn+m from Sn × Sm

Consider the homology of Sn×Sm: by the Künneth formula, we get homology in 0, n,m, n+m,
all of rank one. That is, Sn × Sm has cell decomposition e0 ∪ en ∪ em ∪ en+m. On the other
hand, Sn ∨ Sm is a wedge and so its cell decomposition is e0 ∪ en ∪ em. Then when we take
the quotient Sn × Sm/Sn ∨ Sm, we get e0 ∪ en+m. But the boundary of the en+m was in the
Sn ∨ Sm so the boundary is crushed to a point and we get Sn+m. Thus, Sn × Sm/Sn ∨ Sm is
homeomorphic to Sn+m. This type of construction is called a smash product.

2 Heegard Decomposition of S3 and Zero Surgery

2.1 Heegard Decomposition

We can decompose S3 in many ways. The genus-0 way is to decompose it into two balls.
Consider U = {(x, y, z) ∈ R3 : z ≥ 0} and V = {(x, y, z) ∈ R3 : z ≤ 0}; if we glue the xy-plane
of U and V together by the identity map, we’ll get all of R3. U and V without their boundaries
are both homeomorphic to the open ball B3. By adding a point at infinity in R3, the xy-plane
wraps into S2.

The genus 1 decomposition is more interesting. Consider S3 as R3 with a point at infinity.
If we remove a solid torus S1×D2 from R3 (centered on the z-axis, say), what remains has the
torus T 2 as boundary. Well, what has T 2 as boundary? Another solid torus. It’s more difficult
to imagine this solid torus so consider the following picture (from Okinama Institute of Science
and Technology website):

Two solid tori

Let A be the removed solid torus and B the remaining solid torus. We can fill the hole of
A with some line segments parallel to the z axis. This gives us a trivial bundle of lines over a
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disk D2 which lies in the xy-plane. We can then extend and curve the line segments so that
the two ends of a given line segments join together into an S1. All these S1’s are linked around
A and to ensure they are disjoint, some of the S1’s have to have large radius. In fact, for the
fibers closer to 0 ∈ D2, the radius grows. In particular, the z-axis goes through 0 and forms
a circle with infinite radius (it compactifies on a point at ∞). So now we have our other solid
torus: S1 ×D2.

2.2 Zero Surgery

Suppose we started out with two solid tori S1×D2∪S1×D2. Let’s call the first circle α and the
second one (boundary of D2) β. Now, we want to glue the two solid tori along their boundaries.
We could, for example, glue by interchanging α and β: (α, β) 7→ (β, α). This would give us S3.

On the other hand, if we glue using the map (α, β) 7→ (α, β), the identity map, we get
S1 × S2! The way to see this is, consider our set up from the decomposition. The solid torus
B has D2 in the xy-plane and the S1’s are linked around A. Let’s remove the interior of D2

and fill it into one of the S1’s linked around A. This particular S1 corresponds to an S1 curve
on A which also bounds a disk. Now glue the newly filled in disk to the corresponding disk in
A along the boundary. This is simply gluing two disks along their boundary which gives S2.
Now if we do this for all the links, we get S1 × S2.

This process can also be thought of as starting with an unknot in S3 and thickening it to
obtain a tubular neighborhood. Remove this neighborhood which gives S1 × D2. Now glue
back a solid torus but now as D2 × S1 (we fill in the other S1 instead).

I imagine this type of surgery can be generalized to using different sorts of knots.

3 The Hopf Fibration

Example 3.1. Recall the Hopf Degree Theorem:

Theorem 3.2. Let M be a compact, connected, orientable n-manifold. Let f, g : M → Sn be
continuous maps. Then f ' g (homotopic) if and only if deg f = deg g.

The degree of a map can be defined in many ways between any compact, connected, ori-
entable n-manifolds. For example, if f : M → N is a smooth map, then given a regular value
y,

deg f =
∑

x∈f−1(y)

sign dfx.

Or take a top form η of N . Then ∫
M

f ∗η = k

∫
N

η

for some k ∈ Z. Define deg f := k. But in fact, degree can be defined for continuous maps
between topological manifolds. One notes from the second definition above that the degree of a
map should depend on just the top de Rham cohomology. Thus, we could define degree instead
by considering f∗ : Hn(M ;Z)→ Hn(N ;Z) (both top homologies are Z). The fundamental class
[M ] is mapped to some multiple of the fundamental class of N : k[N ]. Again, let deg f := k.
The point is that the degree of a map only considers top cells and the topological information
of lower cells is lost. However, Sn only has 0 and top homology. Thus, in this setting, the
degree of a map is a powerful homotopy invariant for maps.

One may wonder what degree of a map can tell us about maps f, g : Sn → M . Is there
an inverse Hopf Degree Theorem? No, it fails. Here is a counterexample. In general, if M
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is a manifold, then the map τ : M ×M → M ×M which sends (x, y) 7→ (y, x) is a deg −1
“twisting” map.

Now, define g : S2 × S2 → S2 × S2, g(x, y) = (y, h(x)) where h : S2 → S2 is of degree −1.
This h is easily constructed: take the map S1 → S1 sending z 7→ 1/z. It is deg −1. Then take
the suspension of the map to obtain h : S2 → S2. So deg g = (deg h)(deg τ) = +1 but g is not
homotopic to identity.

Now, π4(S
2) = Z2. Then, π4(S

2 × S2) = Z2 × Z2. Let f : S4 → S2 × S2 be a map which is
represented by (1, 0) ∈ Z2 ×Z2. Then g ◦ f represents (0, 1). τ swaps the two generators (1, 0)
and (0, 1) and I think h sends (0, 1) 7→ (0,−1) = (0, 1). The maps are not homotopic but have
the same degree (as g is degree one).

This construction could be generalized to S2n → Sn × Sn because it seems π2n(Sn) 6= 0 for
at least some 2 ≤ n ≤ 7, but possibly for all. However, it seems that in the construction above,
we needed that (0,−1) = (0, 1) in the group.

Example 3.3. What is π3(
∨n

i=1 S
2
i )? When n = 1, we have just one 2-sphere and the Hopf

fibration tells us this group is Z. Let X :=
∨n S2.

Consider a map f : S3 → X. It is homotopic to a smooth map. The Thom-Pontryagin
construction tells us to take choose a point on each S2 (not the wedge point); we can perturb
f such that it is transverse to each of these points xi and in fact, transverse in a neighborhood.
This means that Li = f−1(xi) is a 1-manifold. It may be disconnected but they should be
disjoint unions of S1. We call these links.

Given two links, we can consider their linking number. S3 is simply connected so all the
components of the links contract. Thus, given links L1 and L2, extend L1 to a disk and orient
L2. Then, L2 intersects the disk of L1 some number of times; we assign ±1 to the intersections
depending on orientation and we get a number out called the linking number: lk(L1, L2). Claim:
lk(L1, L2) = lk(L2, L1). We can also define self-linking number: choose a normal vector field
to a link L (or just a frame: non-tangent vectors to L). Let L′ be L pushed along the normal
vector field. We define lk(L,L) := lk(L,L′).

We may then form a symmetric matrix of these linking numbers. The claim is that these
maps f are in 1-1 correspondence with symmetric n × n matrices with Z coefficients up to
change of basis; i.e. AtBA. But we don’t want to just consider f but its homotopy class. If we
have a homotopy between f and f1, what does the picture look like in S3? That is, how do the
links move about and what sort of surface do they sweep out? The answer is that the links of
f1 are cobordant to links of f .

Proposition 3.4. Let G be the group under addition of n × n symmetric matrices with Z
coefficients, modulo GL(n,Z). π3(

∨n S2) ∼= G. In particular, when n = 1, π3(S
2) = Z.

4 Whitehead’s Theorem

Example 4.1. Recall Whitehead’s theorem: Let X, Y be CW complexes. If there is a
continuous map f : X → Y which induces isomorphisms on every homotopy group; i.e.
f∗ : πk(X) ∼= πk(Y ) for all k, then X and Y are homotopy equivalent.

Is it possible then, to have two spaces which have all the same homotopy groups but are not
homotopy equivalent? Yes. We consider S2 and X = CP∞ × S3. These are CW complexes.
The Hopf fibration and long exact sequence of homotopy groups for fibrations give us that
πk(S2) ∼= πk(S3) for k ≥ 3. Since CP∞ = K(Z, 2), then the only homotopy group it has
is π2 = Z. Thus, for k ≥ 3, πk(X) ∼= πk(S2). And of course Z = π2(S

2) ∼= π2(X) and
π1(S

2) = π1(X) = 0 (same for π0). Thus, they have all the same homotopy groups.
However, the cohomology ring of CP∞ is just the polynomial ring Z[x] and so H∗(X) is

nonzero for all ∗, or at least, infinitely many. But H∗(S2) is zero for ∗ > 2. Thus, they
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have different homology and thus, are not homotopy equivalent despite having all the same
homotopy groups. So there is no single map which induces the isomorphisms on all homotopy
groups, by the contrapositive of Whitehead’s theorem.

By the way, the generator of H∗(CP∞,Z) has an interesting Poincaré dual: the direct limit
of hyperplanes CP n−1 ↪→ CP n.

We have an even simpler example which involves finite CW complexes; in fact, manifolds.
Let X = S2 × RP 3 and Y = RP 2 × S3. Because Sn → RP n is a covering, πkS

n ∼= πkRP n for
k ≥ 2. Moreover, the product formula for homotopy groups is more straightforward than for
(co)homology. Thus, πkX ∼= πkY for all k; in particular, when k = 1, the groups are isomorphic
to Z2.

On the other hand, X is orientable while Y is not and so they have different H5
dR groups

and hence, are not homotopy equivalent.

5 Thom Isomorphism

This section is mostly from Bott-Tu. Let π : E → M be an oriented vector bundle of rank
n. We can define something called compact vertical cohomology on the total space E. The
elements of Ω∗cv(E) will be forms α which satisfy the following: for every compact K ⊂ M ,
π−1(K) ∩ Supp(α) is compact. In particular, the forms have compact support when restricted
to each fiber. Note that this does not mean that the forms have compact support. Consider a
form on the total space of pr1 : R2 → R which has support between the curves y = ±x.

Now, suppose that E = M × Rn with coordinates (t1, ..., tn) on Rn. We define a map π∗
which is essentially integration along the fibers. The forms in Ω∗cv(E) fall into two types.

1. (π∗φ)f(x, t)dti1 ∧ ... ∧ dtir where r < n. Here, φ is a form on M and f is a function with
compact support for each fixed x ∈M . Note that at least all forms of deg < n are of this
type.

2. (π∗φ)f(x, t)dt1 ∧ ... ∧ dtn; φ and f are as above. Note that top forms are of this type.

We define π∗ to map Type 1 forms to 0 and Type 2 forms to φ
∫
Rn f(x, t) dt1...dtn. It’s clear

that by defining π∗ on patches U × Rn, we can define π∗ on general orientable vector bundles.
It turns out that π∗ commutes with d and so it is a chain map. Moreover, we have a

proposition:

Proposition 5.1. Let π : E →M be an oriented rank n vector bundle, τ ∈ Ω∗(M), ω ∈ Ω∗cv(E).

1. (Projection Formula): Then π∗((π
∗τ) ∧ ω) = τ ∧ π∗ω.

2. If M is also oriented of dimension m, ω ∈ Ωq
cv(E), and τ ∈ Ωm+n−q

c (M), then using the
orientation on E induced by M and also the orientation of the bundle, we have∫

E

(π∗τ) ∧ ω =

∫
M

τ ∧ π∗ω.

Theorem 5.2 (Thom Isomorphism). If π : E →M is an orientable rank n vector bundle and
M is of finite type, then

H∗cv(E) ∼= H∗−n(M).

The Thom isomorphism T is the inverse of π∗. We define the Thom class to be Φ := T (1)
where 1 ∈ H0(M) is the constant function 1. Because of the projection formula, we have that
π∗((π

∗τ) ∧ Φ) = τ ∧ π∗Φ = τ . This means that the Thom isomorphism can be written as
T (ω) = π∗ω ∧ Φ. Thus, if we have a description of the Thom class, we can define T .
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Proposition 5.3. The Thom class Φ ∈ Hn
cv(E) for a rank n oriented vector bundle π : E →M

is uniquely characterized as the cohomology class which restricts to the generator of Hn
c (F ) on

each fiber F .

The Thom class restricted to a fiber is something like ρ(t)dt1 ∧ ... ∧ dtn where ρ is a bump
function and the integral of this form is 1. As a visualization, one might imagine Φ as being a
bump form in a neighborhood of the zero section.

There are many reasons why the Thom class is important. To begin, we can realize the
Poincaré dual of a submanifold as the Thom class of the normal bundle. Recall that if S is a
k-submanifold in Mm, then it’s Poincaré dual is a (m− k)-form ηS which satisfies∫

S

ω =

∫
M

ω ∧ ηS

for every k-form ω. The claim is that the Poincaré dual of S is represented by the Thom class
of the normal bundle of S.

Another way the Thom class can appear is as the Euler class of a oriented rank 2 vector
bundle. Let E →M be such a bundle where M is also oriented. Then pulling the Thom class
back to M via the zero section gives the Euler class of E. More generally, if we have the same
situation but the rank is n, then the Euler class of E, e(E) ∈ Hn(M), is Poincaré dual to the
zero locus of a transverse section. The proof uses the Thom class.

6 Cobordism

Example 6.1. Any manifold Mn, if it’s the boundary of a (n+1)-manifold, is cobordant to Sn;
just cut out a small ball in the larger manifold and you’ve created an Sn. This automatically
tells us that if M,N are n-manifolds which bound some manifolds, we can glue the manifolds
they bound along some Sn and now M and N are cobordant to each other.

Do we have some descriptions for when a manifold is the boundary of another manifold?
Yes. By Pontryagin and Thom’s work: All the Stiefel–Whitney numbers of a smooth compact
manifold X vanish if and only if the manifold is the boundary of some smooth compact (possibly
unoriented) manifold. Note that all the Stiefel-Whitney classes don’t have to vanish; just the
SW numbers.

In the case of closed, oriented 3-manifolds, there’s an amazing result that they are all
parallelizable. That precisely means the tangent bundle is trivial (or they admit global frames).
So any closed, oriented 3-manifolds is the boundary of something and all the of these 3-manifolds
are cobordant to each other. Put another way, the oriented cobordism group of 3-manifolds
ΩSO

3 = 0 (here, SO means the special orthogonal which involves orientation).
Even more amazing, Thom computed the unoriented cobordism ring of manifolds ΩO

∗ . Ev-
erything has 2-torsion since 2M is the boundary of M × I. He showed, with some pretty
amazing arguments involving Thom spaces, Eilenberg-MacLane spaces, Postnikov towers, and
stable homotopy groups, that ΩO

∗ = Z2[X̂1, X2, X̂3, X4, ..., X̂2n−1, ...]. So, this is a ring in which
we take out all generators of degree 2n − 1; that is there are no generating manifolds of di-
mensions 2n − 1. In particular, 3 = 22 − 1. This means that ΩO

3 = 0 as well! Any closed,
unoriented 3-manifolds is the boundary of some 4-manifold.

Example 6.2. The above game can be played with other types of cobordism. For example,
maybe you want to consider unitary things instead of special orthogonal. It was shown that if
we study ΩU

∗ ⊗Q, the ring structure is Z[Y2, Y4, Y6, ...] where the generators are in even degrees.
Even more amazing, the generators can be taken to be CP 1,CP 2,CP 3, .... If we forget the
almost complex structure but remember orientation, we obtain ΩSO

∗ ⊗Q = Z[Y4, Y8, Y12, ...]; all
the CP 2n+1 drop out which means that they are each the boundary of something.
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