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1 Symplectic Geometry

Recall that if M is a closed symplectic manifold, all its even Betti numbers are nonzero.

1.1 Examples of Symplectic Manifolds

Example 1.1. Let ω on S2 ⊂ R3 be defined by ωp(X, Y ) = 〈p,X × Y 〉. Here, we have the
cross product and Euclidean dot product. In cylindrical coordinates with the radius fixed at
r = 1, we can show that ω = dθ ∧ dz. Essentially, one notes that a · (b× c) is the volume of a
parallelpiped. Thus, ω is in fact the volume form of R3 contracted with p. Write p = (x, y, z)
as a vector field W = x∂x + y∂y + z∂z. Then ω = ιWdVol.

This shows an ancient result of Archimedes. If we wrap the S2 (radius 1) with a cylinder of
radius 1, any band on the cylinder, when we project it onto S2, orthogonal to the z-axis, the
projected band has the same area as the band on the cylinder.

This is also a toy example of a moment map appearing in toric geometry. S2 = P1 and it
has C∗ ⊂ P1 as a dense open subset. Of course, C∗ acts on itself and so P1 is toric. Then there
is a map µ : P1 → [−1, 1] where the preimage of points other than ±1 are Lagrangian circles
in S2. The interval [−1, 1] is called the Delzant polytope. This is quite an important example
for SYZ fibrations and mirror symmetry.

Example 1.2. CP n has symplectic structure. Let S2n+1 be the unit sphere in Cn+1 and ω̃ the
restriction of the standard form ω0 on R2n+2 to S2n+1. Then ω̃ is closed and invariant under
U(1) = S1 action on S2n+1. Hence, it induces a closed 2-form on CP n = S2n+1/S1 which is
nondegenerate.

Another way to construct this is by explicitly giving a formula. Consider ω̃ = i
2
∂∂̄ log |z|2 on

Cn+1. One can see that |z|2 is invariant under action by U(n+1). The form descends to CP n and
is called the Fubini-Study form ωFS. In a chart, say U0, it equals i

2
∂∂̄ log(1 + |z1|2 + ...+ |zn|2).

Note that by construction, we see that it is a real (1, 1) form. It is not exact though of course,
it is locally exact on the charts.

As a side note, consider a Kähler manifold X with any real smooth function φ : X → R.
Then i∂∂̄φ is a real (1, 1) form and is exact. This is easy to check as i∂∂̄ is basically the
Laplacian. Such a function φ is called a Kähler potential and a Kähler form can be described
in this way locally. We may alter the Kähler form ω by adding i∂∂̄ to it; this changes the
Kähler metric but of course, such a deformation doesn’t change the cohomology class of ω. For
CP n, there is only one cohomology class of Kähler forms.

Example 1.3. Let M be any smooth n-manifold. There is a natural symplectic structure on
its cotangent bundle π : T ∗M → M . Let ξ ∈ T ∗M and ζ ∈ TξT ∗M . We define a 1-form λ in
the following way: λξ(ζ) = ξ(dπξ(ζ)). That is, λ = π∗ξ. Now let (U,ϕ) = (U, x1, ..., xn) be a
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coordinate chart of M and (π−1(U), ϕ̄) = (π−1(U), x̄1, ..., x̄n, y
1, ..., yn) be the induced chart on

T ∗M . Then, locally, ξ =
∑
yi dxi so

λξ = π∗ξ = π∗
(∑

yi dxi

)
=
∑

yi π∗(dxi) =
∑

yi d(π∗xi) =
∑

yi dx̄i.

Then it is apparent that ω := −dλ =
∑
dx̄i ∧ dyi which is locally, the symplectic structure

on (R2n, ω0).

1.2 Grassmannian of Linear Lagrangian Subspaces

Example 1.4. Let LGr(n) represent the Grassmanian of linear Lagrangian n-planes in (R2n, ω0).
How might we compute the dimension of this space? Firstly, we may consider R2n ∼= T ∗Rn

with coordinates (x1, ..., xn, y1, ..., yn). Then, consider homogeneous quadratic functions on Rn.
For example, when n = 2, we have f(x, y) = ax2

1 + bx1x2 + cx2
2. Then df is a 1-form but we

consider it as a linear map and think of the image of df as a linear subspace in T ∗Rn ∼= R2n.
All such linear spaces are transverse to the cotangent fiber and the defining coordinates are
(x1, ..., xn, 0, ..., 0). This means that ω0 vanishes on these spaces. Thus, we have all the linear
Lagrangian subspaces, save the cotangent fiber over 0. However, that is a single point and
doesn’t contribute to changing the dimension.

Therefore, we’ve reduced the problem of computing the dimension to basically computing
the dimension of homogeneous quadratic forms which means computing the dimension of the
space of symmetric n× n matrices. This is

dimLGr(n) = n+

(
n

2

)
=
n(n+ 1)

2
.

In fact, we may use this to compute the dimension of the group of symplectic matrices on
R2n, denoted Sp(2n). It has dimension 2n(2n+ 1)/2 = n(2n+ 1).

Example 1.5. Another view of LGr(n) is as follows. It is a classical fact that U(n) ⊂ Sp(2n)
acts transititvely on LGr(n). Also, take L = Rn, the first part of Rn × Rn. L is Lagrangian
and O(n) maps L = Rn to itself. Thus, LGr(n) ∼= U(n)/O(n). The dimensions work out:
dimU(n) = n2, dimO(n) =

(
n
2

)
.

1.3 Lagrangian Submanifolds

Example 1.6. Consider the n-torus T n ∼= Rn/Zn. It has abelian group structure and under
the involution x 7→ −x, it has 2n fixed points.

I believe that we may realize this in a symplectic way. Consider CP n and RP n embedded
into it. The points of RP n should have a representation of the form [x0 : ... : xn] where
these are all real entries. Also consider the Clifford torus T n where it consists of points of
the form [z0 : ... : zn] where |z0| = |z1| = ... = |zn|. Then the points may be represented by
[1 : eiθ1 : ... : eiθn ]. Both RP n and T n are Lagrangian submanifolds of CP n and they intersect
at exactly 2n points: [1 : ±1 : ... : ±1].

Example 1.7. We can always take a symplectomorphism ϕ : (M), ω → (M,ω) and consider its
graph Γ(ϕ) ⊂ (M ×M,ω⊕ (−ω)). This is a Lagrangian submanifold in M ×M . In particular,
id : M →M is a symplectomorphism and thus, the diagonal ∆ ⊂M ×M is Lagrangian.

Also, if we take the antipodal map α : S2 → S2, then the graph is a Lagrangian in S2 × S2

with the symplectic form ω ⊕ ω (note the signs).
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Example 1.8. Let M be any smooth manifold and consider it’s cotangent bundle π : T ∗M →
M . A point (p, ϕ) ∈ T ∗M comes from p ∈ M and ϕ ∈ T ∗pM . We view T ∗M as a manifold
in its own right and define the Liouville 1-form λ on it in the following way. Let p ∈ M,ϕ ∈
T ∗pM, v ∈ T(p,ϕ)T

∗M . Then λ(p,ϕ)(v) = ϕ(dπ(p,ϕ)(v)). If xi form local coordinates on M around
p ∈M , then we have (xi, ξi) forming local coordinates around (p, ϕ) ∈ T ∗M where ϕ looks like∑
ξidxi locally, which is also the coordinate expression of λ. Thus, ω = −dλ =

∑
dxi ∧ dξi.

This is clearly closed and is locally, symplectomorphic to (R2n,Ω) with its standard symplectic
form. Thus, ω is a symplectic form.

Now, let η be a 1-form of M . We can view it as a section (and thus, a smooth map M →
T ∗M) of π : T ∗M → M . Observe that (η∗λ)p(v) = λη(p)(dηp(v)) = ηp(dπη(p) ◦ dηp(v)) = ηp(v).
Thus, η∗λ = η. This is the reason why λ is sometimes called the tautological 1-form.

Claim: η : M → T ∗M , thought of as a smooth map, is an embedding. It is a closed 1-form
if and only if the image η(M) is a Lagrangian submanifold of T ∗M .

Proof. The fact that π ◦ η = idM means it is a smooth immersion and injective. We only need
to show it is a proper map to show that it is an embedding. It is a basic fact that if X, Y are
topological spaces and f : X → Y is continuous, then if Y is Hausdorff and f has a continuous
left inverse, f is proper. Here, π is our continuous left inverse. Thus, η is an embedding.

To see the second statement, note that η(M) is n-dimensional, being an embedding. Thus,
we just need ω to vanish on η(M) (be isotropic) or equivalently, η∗ω = 0. But η∗ω = −η∗dλ =
−dη∗λ = −dη. Thus, η is a Lagrangian embedding if and only if dη = 0.

Example 1.9. Consider the situation as above: M is a smooth manifold and its cotangent
bundle is a symplectic manifold with a Liouville form: (T ∗M,λ). Let f : M → R be a Morse
function and let L0 be the zero section of T ∗M while L1 is the image of df . If we view df as
a smooth map on manifolds, then we may pullback λ by df . Thus, we have df ∗λ = df ; i.e. λ
restricted to L1 is an exact 1-form. Therefore, ω on L1 vanishes. L1 is indeed, a Lagrangian
submanifold since it is the image of a closed 1-form (see the example above), but moreover, it
is the image of an exact 1-form. We call this an exact Lagrangian.

On the other hand, f is Morse so the image of df intersects the zero section L0 transversely.
L0 is also an exact Lagrangian (just take any constant function g on M to find 0 = dg = λ|L0).
Let us scale f by a small ε > 0 so that the two Lagrangian submanifolds are “close.” Lastly,
there is a Hamiltonian isotopy between them, generated by εf ◦ π where π : T ∗M → M is the
canonical projection.

It is a conjecture of Arnold that all compact exact Lagrangians of a cotangent bundle are
Hamiltonian isotopic to the zero section. We see above that if the exact Lagrangian arises
from a Morse function, this is doable. But in the general setting, this is an extremely difficult
question. To date, the conjecture is only proved for T ∗S2 and T ∗RP 2 and uses 4-manifold
theory. Fukaya, Seidel, and Smith have a paper showing that, if the base manifold M is a
compact, simply-connected, spin manifold, and we assume that the exact Lagrangians under
consideration are also spin, then they have the same homology. Mohammed Abouzaid has
been able to drop the simply connected and spin conditions and even shown that they must be
homotopically equivalent. But the conjecture remains quite elusive.

Example 1.10. In Paul Seidel’s Fukaya Categories and Picard-Lefschetz Theory, he mentions
in the introduction that the space of Lagrangian submanifolds is an infinite dimensional space.
Locally around some L ⊂ (M,ω), this space is modeled on closed 1-forms on L. Up to Hamil-
tonian isotopy, the space locally has b1(L) degrees of freedom.

Sketch of proof: If we consider a loop space of a manifold Mn, locally around a loop γ :
S1 → M , the loop space is modeled on sections of the bundle γ∗TM → S1. This is because
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there are n degrees of freedom to push the loop around, including the direction tangent to γ.
This tangent direction is essentially a way to reparametrize the loop.

However, if we do not care about parametrization of the loop, we only look at normal direc-
tions. Similarly, if we’re looking at Lagrangian submanifolds in M2n to perturb, we only need
to look at the normal directions. Thus, we should consider the normal bundle of L. Weinstein’s
neighborhood theorem says there is a neighborhood of L in M which is symplectomorphic to
T ∗L. Thus, if considering the space of submanifolds of dimension n we want to consider sec-
tions of T ∗L → L which are 1-forms on L. However, it is the closed 1-forms which will give
Lagrangian submanifolds, as discussed above.

Also from above, if we have an exact 1-form df where, say, f is Morse (recall, Morse functions
are dense in C∞(L)), then df(L) is an exact Lagrangian Hamiltonian isotopic to L0. Thus, up
to Hamiltonian isotopy, there are b1(L) degrees of freedom.

Example 1.11. (from Jonathan Evans’ slides) Let N ⊂ M2n be a symplectic submanifold
of codim 2 and suppose N has a Lagrangian submanifold L of dimension n − 1. Since N is
symplectic, it has a neighborhood which is symplectomorphic to a neighborhood of the zero-
section in its symplectic normal bundle. We can use ω with a compatible J to define a metric
and get a fixed-radius circle bundle of N . Restricting this to L will give an S1-bundle over L
inside of M . This bundle is Lagrangian in M .

Example 1.12. Let ϕ : (M,ω) → (M,ω) be an antisymplectic involution. This means that
ϕ∗ω = −ω and ϕ2 = id. The fixed point locus is isotropic. Recall, a submanifold is isotropic
if ω vanishes when restricted to it. Since ϕ2

∗ = id, then it has eigenvalues ±1 and splits TpM
into two eigenspaces: E±1. It’s easy to check that ωp|E1 = ωp|E−1 = 0. So both are isotropic
which means that dimE±1 ≤ n. Since TpM = E1 ⊕E−1, this means that they must both have
dimension n. Another view point is to consider the operator T = id +ϕ∗ : TpM → TpM . Its
image is E1, its kernel is E−1. But the point is, if V = v + ϕ∗v, then TV = V , a fixed point of
T . Through this discussion, one may hope to produce some Lagrangian submanifolds.

However, it is possible for an antisymplectic involution to lack fixed points. Take α :
S2 → S2, the antipodal map. On the standard embedding of S2 ⊂ R3, the symplectic form is
ω = ιV vol where V = x∂x + y∂y + z∂z and vol = dx ∧ dy ∧ dz. Then it is clear that α2 = id
and α∗ω = −ω. But α does not have any fixed points.

If we have a projective manifold, for example, then taking the real part will give a La-
grangian submanifold; e.g. RP n ⊂ CP n. This is because conjugation is an involution and is
antisymplectic.

Example 1.13. Let L ⊂ (M,ω) be a Lagrangian and J a compatible almost complex structure.
Let g be the Riemannian metric defined by ω, J . Observe that if v, w ∈ TL, then g(Jv, w) =
ω(Jv, Jw) = ω(v, w) = 0. Thus, JTL ⊥ TL. This means that J : TL → TL⊥ ∼= νL is an
isomorphism from the tangent bundle to normal bundle of L.

Example 1.14. Recall the Weinstein neighborhood theorem: Let L ⊂ M be a Lagrangian.
Then, there is a neighborhood of L symplectomorphic to a neighborhood of the zero section of
T ∗L.

This gives us the following lemma: Let j : L→M be a compact, orientable Lagrangian (so
that j∗[L] is a homology class). Then the self-intersection of j∗[L] is −χ(L).

The proof is simple. Use Weinstein’s neighborhood theorem to realize L as the zero section
of T ∗L. Then the self-intersection of the zero section is just the number of zeros of a generic
1-form, counted with signs. This is precisely χ(T ∗L) = −χ(TL) = −χ(L).

As a corollary, the only compact, oriented Lagrangians in C2 are tori. This is because
j∗[L] ∈ H2(C2,Z) = 0 and so χ(L) = 0. Compact, oriented real surfaces are classified by Euler
characteristic and so L must be a torus. In general, j∗[L] ∈ Hn(Cn,Z) = 0 so we need χ(L) = 0.
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However, it is a theorem of Gromov that Cn does not admit Lagrangian spheres. Indeed, he
showed that if L ⊂ Cn is a compact, embedded Lagrangian, H1(L,R) 6= 0.

Example 1.15. Let (M,dα) be an exact symplectic manifold. Recall that a Lagrangian is
exact if there is a function f : L → R such that df = α|L. The function is unique up to
a constant. We call a pair (L, f) an exact Lagrangian brane if L is an exact Lagrangian
where f : L → R is a choice of function such that df = α|L; it is called a phase function.
This definition was specificed in Seidel’s 2003 paper: A long exact sequence for symplectic Floer
homology.

Here is a remark that Y. Oh makes about branes: The objects that occur as the natural
boundary conditions of the given system in string theory roughly correspond to the notion of
D-branes, which has been playing a fundamental role in the current string theory since around
1996 when the physicists introduced the concept of D-branes in open string theory.

Let’s now consider a straightforward theorem:

Theorem 1.16. Let (M,dα) be an exact symplectic manifold, and let (L, g), an exact La-
grangian brane with i : L → M , be the inclusion. Then the Hamiltonian flow φt of some H
induces a smooth family of exact Lagrangian branes (Lt, ft) provided by Lt = it(L), it : L→M
and ft : L→ R, where

it = φt ◦ i, ft = g +

∫ t

0

(Hs + α(XHs)) ◦ is ds.

Proof. Our goal is to show that i∗tα = dft. i
∗
tα = (φt ◦ i)∗α = i∗φ∗tα. If we find the derivative

of this, we can then integrate to obtain the original thing. What’s the point of doing this? We
can just focus on the time derivative of φ∗tα.

d

dt
φ∗tα = φ∗tLXHtα

= φ∗t (dιXHtα + ιXHtdα)

= φ∗t (dα(XHt) + ω(XHt , ·))
= φ∗t (dα(XHt) + dHt)

= dφ∗t (α(XHt) +Ht)

= d(α(XHt) ◦ φt +Ht ◦ φt).

Now, let us set i∗0α = dg. Then

i∗tα = dg +

∫ t

0

d

ds
i∗sα ds (1.1)

= d

(
g +

∫ t

0

(α(XHs) ◦ φs +Hs ◦ φs) ◦ i ds
)

(1.2)

= d

(
g +

∫ t

0

(α(XHs) +Hs) ◦ is ds
)

(1.3)

This final expression on the right is precisely dft.

Observation: Even if L0 = L1, there is no guarantee that g1 = g0. This monodromy is an
important feature to the Fukaya category of exact Lagrangian branes.
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1.4 Symplectomorphisms vs. Hamiltonian Diffeomorphisms

Let (M,ω) be a symplectic manifold. Recall that the group of symplectomorphisms of M form
a infinite dimensional group Symp(M,ω) with Lie algebra consisting of vector fields X such
that the 1-form ιXω is closed.

ϕ : M →M is a Hamiltonian diffeomorphism if there exists a path of symplectomorphisms
{ϕt}0≤t≤1 and a smooth function H : [0, 1]×M → R such that ϕ0 = idM and ϕ1 = ϕ and if Xt

is the time-dependent vector field induced by the equation

d

dt
ϕt = Xt ◦ ϕt

then ιXtω = dHt. These form an infinite dimensional group called Ham(M,ω) and the Lie
algebra consists of vector fields X such that the 1-form ιXω is exact. We may, of course,
consider autonomous Hamiltonian diffeomorphisms; i.e. the Xt are independent of t.

Fact: Ham(M) ⊂ Symp(M) is a normal subgroup. If H1(M,R) = 0, then Ham(M) =
Symp0(M), the connected component of Symp(M) containing the identity.

If M is not closed, then it is possible for a Hamiltonian diffeomorphism to be fixed-point
free.

Example 1.17. Consider translation in the x-direction of R2: ϕt(x, y) = (x + t, y). This is a
Hamiltonian diffeo because the function H(x, y) = y is the Hamiltonian we seek; it is clearly
fixed-point free.

Also, dH = dy is translation invariant and thus, it descends onto the torus T 2. The
translation maps (which might be better described as rotations on T 2), also descend and are
still fixed-point free. Since ω on R2 is translation invariant, it descends to a translation invariant
2-form on T 2. Therefore, these ϕt are symplectomorphisms.

However, they are no longer Hamiltonian. The immediate reason is that dy is no longer
exact; only locally exact. For there is no single chart with coordinate function y to give us this
form. Along y-axis, dy descends to a 1-form of S1 and it is a volume form; it cannot be exact.

This example demonstrates a more general phenomenon: on closed symplectic manifolds,
an autonomous Hamiltonian diffeomorphism ϕ must have fixed points. After all, a function on
a compact manifold has to have critical points. At a critical point x, dHx = 0 which means, by
the nondegeneracy of ω, our vector field (XH)x = 0 and thus, ϕ̇t(x) = 0. On the other hand,
ϕ0(x) = id(x) = x. So ϕt(x) = x and in particular, ϕ(x) = ϕ1(x) = x.

1.5 Hamiltonian Floer Theory

Example 1.18. Here is a rather trivial example. Let’s consider S2 embedded in R3 in the
usual manner with the standard complex structure J and symplectic form ω. Let H : S2 → R
be the Morse function (our Hamiltonian) which is the usual height function (with respect to
the z-axis): H(x, y, z) = z. Then the Hamiltonian vector field X is defined by ιXω = −dH;
say we have also the standard metric g := ω(·, J ·). Then ω(X, Y ) = −dH(Y ) = −〈∇H, Y 〉 =
−ω(∇H, JY ) = −ω(Y, J∇H). So X = J∇H; as the gradient of H gives trajectories which
are longitudinal lines down S2, the trajectories of X are the lines of latitude. Thus, the flow
generated by X are rotations of S2 around the z-axis.

We can do some scaling of H so that the time 1 flow ϕ1 is a rotation by 2π; i.e. ϕ1 = id.
Then, we see that in this case, every point of S2 is a fixed point of ϕ1. Then this Hamiltonian
is highly degenerate. However, in general, ϕ1 only fixes the north and south poles and those
are the only periodic orbits. The lower bound predicted by Arnold’s conjecture is the sum of
Betti numbers which is indeed 2.
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Now, what if instead of H(x, y, z) = z, we had any smooth function f : R → R such that
H(x, y, z) = f(z)? Note that there is rotational symmetry around the z-axis. As such, it seems
to me that considering this new Hamiltonian on S2 is equivalent to considering the standard
height function on a strangely embedded S2 that has rotational symmetry about the z-axis.

Example 1.19. The purpose of this example is to show why we should not use the Morse index
definition in an infinite dimension situation. It also demonstrates some basic computations from
complex analysis. Let us consider H ≡ 0 on M = C. The symplectic form is ω = dx∧ dy = dλ
where λ = x dy. In general, the action functional is

AH(γ) = −
∫
D2

γ∗ω +

∫
S1

H(t, γ(t)) dt,

where γ is an extension of γ : S1 → M to D2. Since H ≡ 0, the second term is clearly 0.
Since ω is exact on C, then the first term is −

∫
S1 γ

∗λ. Note that i
2
dz ∧ dz̄ = dx ∧ dy = ω and

− i
2
d(z̄dz) = ω. Thus, in this situation

AH(γ) =
i

2

∫
γ

z̄ dz.

Now let γ(t) be a loop expressed in its Fourier expansion:
∑

k∈Z zke
−ikt. This is contractible,

being in C. Then substituting,

z̄ =
∑
k∈Z

z̄ke
ikt, dz = −i

(∑
k∈Z

kzke
−ikt)dt.

Observe that taking the kth term in each, their product is −ik|zk|2. When k 6= j, we get
two terms:

kzkz̄je
i(k−j)t + jz̄kzje

i(j−k)t.

However, the integral of ei(k−j)t from 0 to 2π is zero when k 6= j. This confirms the well-known
fact in Fourier analysis that {eikt}k∈Z forms an L2 orthonormal basis. So we only care about
the terms where k = j. This gives us that

AH(γ) = π
∑
k∈Z

k|zk|2.

If we have a Hermitian metric with some quadratic form A, then 〈z, w〉 = ztAw̄. Letting
z = (zk)k∈Z, the action functional has infinite rank matrix A

A = π


. . .

k − 1
k

k + 1
. . .

 .

Here, the negative and positive eigenspaces both have infinite dimensions. Thus, the dimensions
of the stable and unstable manifolds are infinite dimensional. We’re not able to, using this index,
find the dimension of the M(x, y) where x, y are critical points of AH .
Notice that this example also serves to illustrate that the action functional is neither bounded
below nor above. For each k ∈ Z and letting γk(t) := eikt, AH(γk) = kπ.
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Example 1.20. Often, in Floer theory, we require some conditions on our symplectic manifold
(M,ω) so that we can more easily do Floer theory or Gromov-Witten theory. For example,
besides compactness (so we sometimes allow for manifolds with special boundary), we may ask
for symplectic asphericity or strong symplectic asphericity. The first condition means that for
every smooth map f : S2 →M , ∫

S2

f ∗ω = 0.

This is sometimes written as π2(ω) = 0. The second condition is that we have both π2(ω) = 0
and also, for all f : S2 →M , ∫

S2

f ∗c1 = 0.

This is sometimes denoted: 〈c1, π2(M)〉 = 0. Put another way, the pullback bundle f ∗TM → S2

is always sympletically trivial. It’s clear that when π2(M) = 0, then it is strongly symplectically
aspherical. For any map f : S2 → M is homotopic to a constant function and so there is a
homotopy H : S2 × I →M such that H(x, 0) = pt,H(x, 1) = f(x). Then

0 =

∫
S2×I

H∗dω =

∫
S2

f ∗ω −
∫
S2

pt∗ω =

∫
S2

f ∗ω.

Furthermore, TM → M is classified by the homotopy class of some map v : M → BSp(2n);
BSp(2n) deformation retracts to BU(n). f ∗TM is classified then by the homotopy class f ◦ v
but f ∈ π2(M) = 0 so then f ∗TM is symplectically trivial.

One reason to assume strong symplectically asphericity is to avoid the phenomenon of
bubbling (discussed later). Examples of such manifolds are Riemann surfaces of positive genus.
The Uniformization Theorem, says that the universal cover of S2 is itself, the universal cover
of the torus is the complex plane, and the universal cover of higher genus Riemann surfaces is a
disk. It’s also the case that if M̃ →M is a covering, then πk(M̃) ∼= πk(M) for all k ≥ 2. Since
C and the disk are contractible, then all their higher homotopy groups vanish and therefore, so
do all the higher homotopy groups of positive genus compact Riemann surfaces.

Example 1.21. However, this strong symplectic asphericity is quite a restrictive condition.
Thus, sometimes we ask instead that all smooth maps f : S2 →M satisfy,∫

S2

f ∗c1 = λ

∫
S2

f ∗ω.

Here, there are three cases: λ > 0, λ = 0, λ < 0. These roughly correspond to manifolds with
positive curvature, are flat, and have negative curvature, respectively. The toy models are S2,
T 2, and Σg for g ≥ 2.

The case of λ > 0 is called monotone. In real dim 4, a class of monotone symplectic
manifolds comes from the the complex algebraic surfaces known as the del Pezzo surfaces.
These are P1 × P1 and CP 2 blown up between 0 and 8 points, generically. Ono and Ohta
proved that these are the only monotone symplectic 4-manifolds. More generally, there is a
class complex projective varieties called Fano varieties which turn out to be monotone.

A complex manifold (Xn, J) is Fano if there is an immersion ϕ : X ↪→ CPN and a positive
integer k so that (K−1

X )⊗k = ϕ∗O(1), where K−1
X = Λn,0TX is the dual of the canonical bundle.

That’s the definition for a line bundle to be ample. The immersion condition allows for some
singular behavior.

Here is a theorem I read on the blog The Electric Handle Slide. The post was written by
Nate Bottman.
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Theorem: If (X, J) is a complex Fano manifold, then there exists a symplectic form ω on X
so that (X,ω, J) is a monotone Kähler manifold. If (X,ω, J) is a projective monotone Kähler
manifold, then it is Fano.

Let’s consider why Fano implies monotone. Let (Xn, J) be Fano and ϕ : X ↪→ CPN

our immersion. If ωFS is the Fubini-Study form on CPN , then c1(TCPN) = [ωFS]. Define
ωX := ϕ∗ωFS. We show that (X,ωX) is monotone.

ωX is compatible with J because ωX(Jv, JW ) = ϕ∗ωFS(Jv, Jw) = ωFS(ϕ∗Jv, ϕ∗Jw). But

ϕ is an immersion, which in this category, means it is holomorphic. So ϕ∗J = J̃ϕ∗. Then
ωFS(ϕ∗Jv, ϕ∗Jw) = ωFS(J̃ϕ∗v, J̃ϕ∗w) = ωFS(ϕ∗v, ϕ∗w) = ωX(v, w). The penultimate equality

comes from J̃ being compatible with ωFS.
Now, the 1st Chern class of a vector bundle equals the 1st Chern class of its top exterior

power, so: kc1(TX) = kc1(K−1
X ) = c1((K−1

X )⊗k) = c1(ϕ∗O(1)) = [ωX ]. This fits the monotone
condition, so long as ωX is symplectic.

So we should check that ωX is a symplectic form. It is closed since ωFS is closed. The
nondegeneracy of ωX follows from the fact that if Y is a Kähler manifold and Z ⊂ Y is a
complex submanifold, then ω|Z is nondegenerate. I think it should work even if Z is immersed
and not embedded since there is no collapsing of tangent spaces.

The monotone-implies-Fano direction requires more machinery. It relies on the Nakai-
Moishezon-Kleiman criterion which can be found in Rob Lazarsfeld’s Positivity I.

Thus, we have a decent number of monotone manifolds from considering Fano manifolds.
Among 3-folds, there are something like 108 Fano manifolds up to deformation.

By the way, in the case where λ = 0, this can be satisfied if c1 = 0; e.g. in the case
of Calabi-Yau manifolds which, having trivial canonical bundle means c1 = 0. Note that for
complex surfaces, these are the K3 surfaces.

1.6 Moment Map

See section starting on p. 161 of McDuff and Salamon’s Introduction to Symplectic Topology.
Suppose we have a compact Lie group G which acts covariantly on a symplectic manifold
M via symplectomorphisms. That is, there is a group morphism G → Symp(M) such that
ψgh = ψg ◦ ψh and ψ1 = id. The infinitesimal action defines a Lie algebra homomorphism
g→ X (M,ω) : ξ 7→ Xξ:

Xξ :=
d

dt

∣∣∣
t=0
ψexp(tξ).

Since ψg is a symplectomorphism for all g ∈ G, then every Xξ is a symplectic vector field; i.e.
ιXξω is a closed 1-form. We say it is a Hamiltonian vector field if it is exact; i.e, there is some
function Hξ such that dHξ = ιXξω. We call an action of G on M weakly Hamiltonian if
every Xξ is a Hamiltonian vector field. However, the Hξ are unique up to a constant. We may
choose a constant to make the map ξ 7→ Hξ linear. The action is called Hamiltonian if the
map

g→ C∞(M) : ξ 7→ Hξ

can be chosen to be a Lie group homomorphism with respect to the Lie algebra structure on g
and the Poisson structure on C∞(M,R).

Now, assume the action of G is Hamiltonian on M . Then a moment map for the action
is a map µ : M → g∗ such that the formula Hξ(p) = 〈µ(p), ξ〉 defines a Lie algebra morphism
ξ 7→ Hξ as above. In other words, given a Lie algebra morphism ξ 7→ Hξ such that Xξ = XHξ

for all ξ, the map ξ 7→ Hξ(p) is a linear functional on g and it is denoted by µ(p).
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Example 1.22. (Angular Momentum) Consider the diagonal action of G = SO(3) on R3×R3

with the standard symplectic form. So ψΦ(x, y) = (Φx,Φy) for Φ ∈ SO(3). By recalling that
so(3) consists of skew-symmetric matrices, i.e. At = −A, one can perform a straightforward
calculation to see that the action is exact.

In fact, the action is generated by functions HA(x, y) = 〈y, Ax〉 where A ∈ so(3). We may
also identify so(3) with R3 via the map R3 → so(3) : ξ 7→ Aξ,

Aξ =

 0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0


Thus, Aξx = ξ × x for x, ξ ∈ R3 and

[Aξ, Aη] = Aξ×η, AΦξ = ΦAξΦ
−1, tr(AtξAη) = 2〈ξ, η〉

The last identity implies that the standard inner product on R3 induces an invariant inner
product on so(3) and the dual so(3)∗ can be identified with so(3) via this inner product. With
this notation, the Hamiltonian function HAξ can be written in the form HAξ(x, y) = 〈x× y, ξ〉.
Hence, the moment map µ : R3 × R3 → so(3) is given by µ(x, y) = Ax×y, where A is defined
by the matrix above.

If x is the position and y the momentum, then x × y is the angular momentum. If
H : R6 → R is any Hamiltonian function which depends only on |x|, |y| (such as motions in a
central force field), then H is invariant under the action of SO(3). This implies, in this case,
the angular momentum determines three independent integrals of the motion.

1.7 Bubbling

Example 1.23. Consider the maps un : P1 → P1 × P1 defined by z 7→ (z, 1/(nz)). Then,
away from z = 0 (in the chart U∞), as we let n → ∞, the maps are converging to the curve
u : P1 → P1×{0}. but near z = 0, if we reparameterize the domain by the change of coordinates
z = 1/(nw), this converges to the sphere {0} × P1. Thus, we get a bubble coming off of the
first P1 and have something that appears as P1 ∨ P1.

Or, take un : P1 → P1 × P1 × P1 where z 7→ (z, 1/(nz), 1/(n2z)). Here, we get a bubble as
before and an additional one at {0} × {∞} × P1.

Example 1.24. An exercise in ch. 6 of Audin and Damian gives the example of a complex curve
C in C2 defined by y2 = 4x3 − x− 1. Consider the map C → C2 given by (x, y) 7→ (α2x, α3y)
where α ∈ C. Then we can complete this map to a map uα : C → CP 2. We first homogenize
the equation above to get y2z = 4x3 − xz2 − z3. Then uα sends [x : y : z] 7→ [α2x : α3y : z].
Observe that if we let X = α2x, Y = α3y, Z = z, then the image of C satisfies the equation
Y 2Z = 4X3 − α4XZ2 − α6Z3. This defines a “new” curve C ′ though it’s really just C with a
change of coordinates.

Observe that when α = 0, then we’re left with Y 2Z = 4X3, a cuspidal cubic. Letting
f = Y 2Z − 4X3, we can see that it’s singular:

∂f

∂X
= −12X2

∂f

∂Y
= 2Y Z

∂f

∂Z
= Y 2
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The point [0 : 0 : 1] is on this curve and all the partial derivatives vanish at this point.
Thus, it is a singular subvariety. However, the parametrized map t 7→ (t2, 1

2
t3) gives a curve

satisfying y2 = 4x3. This is a smooth map; the differential vanishes as t 7→ 0.
Here lies an important lesson: the image is singular but the map is smooth. Thus, if we

look at uα as α → 0, we should look at how the maps are converging, not what the images
converge to. The topology on the space of maps is C∞loc so what it converges to is something
rather strange. (This is the main lesson of bubbling to take away from this paragraph).

The family converges to a map which, when z 6= 0, sends [x : y : z] 7→ [0 : 0 : z] = [0 : 0 : 1].
Thus, the curve C is sent to a point. However, these uα are converging to a map v which has
a different domain.

Consider what happens we if expand the domain to looking at v : CP 2 → CP 2. We already
know C 7→ [0 : 0 : 1]. What if we look at points not in C, when z = 0 and x 6= 0? Then we
have [x : y : 0] 7→ [α2x : α3y : 0] = [x : αy : 0]. Then with α = 0, we have [x : y : 0] 7→ [1 : 0 : 0].
That is, all of S2 = CP 1 7→ [1 : 0 : 0] except for [0 : 1 : 0]. I’m not really confident in this
reasoning and how uα → v but if this is correct, then the domain of v is C plus a P1.

2 Contact Geometry

Let M be a manifold of odd dimension 2n+ 1. Recall that a contact form θ is a nonvanishing
smooth 1-form such that dθ is nondegenerate when restricted to ker θ (which is rank 2n).
Observe that dθ is a symplectic tensor under this restriction. A contact structure on M is a
smooth distribution ξ which is locally described by contact forms. If such a distribution exists,
we call (M, ξ) a contact manifold.

Proposition 2.1. A 1-form θ on M2n+1 is a contact form if and only if θ∧dθn is nonvanishing
on M .

Note that this condition is the opposite of integrability in the sense of Fröbenius. A 1-form
α defines an integrable distribution kerα if and only if α∧dαn = 0 everywhere. Thus, a contact
structure is, in a sense, maximally non-integrable.

Example 2.2. Here are some standard contact structures:

1. On R2n+1 with coordinates (x1, ..., xn, y1, ..., yn, z), the standard contact form is

θ = dz −
n∑
yidxi.

Observe that dθ = ω, the standard symplectic form on R2n (drop the last coordinate).
Let us define some vector fields:

Xi =
∂

∂xi
+ yi

∂

∂z
, Yi =

∂

∂yi
.

One can check that ξ := ker θ = span{Xi, Yj}i,j. Also, dθ(Xi, Xj) = dθ(Yi, Yj) = 0 and
dθ(Xi, Yj) = δij. Thus, ξ is a contact structure defined by θ.

2. Let T ∗M be the contangent bundle of any smooth manifold with Liouville form λ. Then
R× T ∗M has contact form θ = dz − λ where z is the coordinate on R.
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Example 2.3. Let ι : S2n+1 → R2n+2 be the inclusion map. We define a 1-form on R2n+2:

Θ =
n+1∑

xidyi − yidxi

and let θ = ι∗Θ. If Ω is the standard symplectic form on R2n+2, observe that dΘ = 2Ω. Note
that we can obtain Ω from taking d of

∑n+1 xidyi as well. So the “anti-derivative” is not unique
up to constant, for forms. Now, define on M = R2n+2 − {0} the following vector fields:

N =
∑

xj
∂

∂xj
+ yj

∂

∂yj
, T =

∑
xj

∂

∂yj
− yj

∂

∂xj
.

With respect to the usual Euclidean Riemannian metric, N is normal to S2n+1 while T
is tangent. Let S = span{N, T} ⊂ TM be a rank 2 subbundle and S⊥ be its symplectic
complement with respect to Ω. That is, X ∈ S⊥ means Ω(N,X) = Ω(T,X) = 0.

Recall that for p ∈M , Sp is a symplectic vector space if Sp∩S⊥p = {0}. While this holds
for orthogonal decompositions, it doesn’t always hold for symplectic vector spaces. In our case,
if x ∈ Sp ∩ S⊥p , then for y ∈ Sp, Ωp(x, y) = 0 because x ∈ S⊥p . And if y ∈ S⊥p , Ω(x, y) = 0
because x ∈ Sp. But Sp + S⊥p = TpM so, by nondegeneracy of Ω, x = 0. Therefore, Sp and S⊥p
are both symplectic vector spaces for all p ∈M .

Also, observe the following contractions:

ιNdΘ = 2Θ, ιTdΘ = −2
n+1∑

xidxi + yidyi = −d(|x|2 + |y|2).

The function f(x, y) = |x|2 + |y|2 points radially outward and so any vectors normal to it; i.e.
tangent to spheres, are in the kernel of df . That is ker df = TS2n+1.

Now, dΘ(N, T ) = 2Θ(T ) = 2(|x|2 + |y|2) 6= 0 on M . On the other hand, if X ∈ S⊥,
then 0 = dΘ(N,X) = 2Θ(X). So X ∈ ker Θ. On the other hand, 0 = dΘ(T,X) = −df(X)
means X ∈ ker df = TS2n+1. What we’ve shown here is that S⊥ ⊂ ker Θ ∩ TS2n+1. S⊥ is
rank 2n while the two bundles on the right are each of rank 2n + 1. However, observe that
0 = dΘ(N,N) = 2Θ(N) so N ∈ ker Θ but N /∈ TS2n+1. Thus, the by dimension reasons,
S⊥ = ker Θ ∩ TS2n+1. Moreover, θ = Θ|S2n+1 so S⊥ = ker θ.

Lastly, dθ = ι∗dΘ = dΘ|S2n+1 . Since ker θ ⊂ TS2n+1, restricted to S⊥, dθ = dΘ. If we fix
X ∈ S⊥ and find that dΘ(X, Y ) = 0 for all Y ∈ S⊥, then X = 0. This is because the only
elements symplectically complement to all of S⊥ are linear combinations of N and T , neither
of which reside in S⊥. Thus, X = 0 is the trivial linear combination. This shows that dθ is
nondegenerate on ker θ and hence, is a contact form with distribution ξ = S⊥ = ker θ.

Theorem 2.4. Let (M, ξ) be a contact manifold with defining contact form θ. There exists a
unique vector field X such that ιXdθ = 0 and θ(X) ≡ 1. This vector field is called the Reeb
field.

Proof. Let Φ : TM → T ∗M be a bundle morphism which sends V 7→ ιV dθ. For p ∈ M , if we
restrict the map Φp : TpM → T ∗pM to ξp, then it is injective because dθp|ξp is nondegenerate.
Then, Φp has rank at least 2n. If it had rank 2n+ 1, this implies dθp is nondegenerate on TpM
which is not possible as dimTpM is odd. So the rank of Φp is 2n and its kernel is 1 dimensional.

This means ker Φp is not contained in ξp = ker θp. Then, there is a unique vector Xp ∈ ker Φp

such that θp(Xp) = 1. And of course 0 = Φp(Xp) = dθp(Xp,−). Thus, we’ve found a vector field
that satisfies the properties above. We only need to show smoothness which follows because
ker Φ is a smooth distribution.

If X is a Reeb field for contact form θ, note that LXθ = dιXθ + ιXdθ. The second term is
0 by the properties of the Reeb field and ιXθ ≡ 1 so d(1) = 0. Thus, LXθ = 0.
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