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These are some notes that mostly come from the brilliant book of John Milnor—Singular Points
of Complex Hypersurfaces—and also the book Singularities of Differentiable Maps, v. II by V.
Arnold, S, Gusein-Zade, and A. Varchenko. I mostly record results. For proofs, please consult
the original texts.

1 Singularities of Complex Hypersurfaces

Consider a polynomial function f : (Cn+1, 0) → (C, 0) and let Vf = f−1(0). As a reminder,
Cn+1 cannot have compact complex submanifolds. Let K := Vf ∩ S2n+1

ε where ε > 0 is small;
this is a link of the singularity. Let us consider a Gauss map g : Cn+1 \ Vf → S1 defined by
z 7→ f(z)/|f(z)|. We will also, on occasion, make the assumption that in some neighborhood of
0 ∈ Cn+1, there are no critical points except for possibly, 0. A nonexample is f(z, w) = z2w2.

Theorem 1.1 (Milnor). For sufficiently small ε > 0, g restricted to S2n+1(ε) \ Vf → S1 is
a fibration. Let Fθ = g−1(eiθ) denote the fibers; Fθ is a non-compact parallelizable smooth
manifold of real dimension 2n.

Theorem 1.2 (Milnor). If p is an isolated critical point of f , then each fiber Fθ has the
homotopy type of a bouquet of spheres: Fθ '

∨µ Sn where µ is strictly positive. The fiber is the
interior of a compact manifold with boundary: F θ = Fθ ∪K, K is as above and is a common
boundary for every Fθ. Moreover, K is (n− 2)-connected; i.e. πi(K) = 0 for i = 0, ..., n− 2.

Remark: Note that when we assume the critical point is isolated, we were able to say more.
This number µ is called the Milnor number. The intuition is that the larger µ is, the more
complicated the singularity. The homology of Fθ is only interesting in the middle dimension:
µ = dimHn(Fθ). Also, this is sort of like an open-book decomposition where K is the spine.
Or better yet, since all the F θ have K as the common boundary, this shows that K links them
together.

We also have a way to compute the Milnor number µ(f). Simply take the ring of polynomials
around 0, O0 and mod out by the ideal of first partial derivatives of f :

Af :=
O0

〈∂1f, ..., ∂n+1f〉
.

This Af is an algebra and a vector space. We let µ(f) = dimCAf .
Incredibly, the story does not stop there. This compactified manifold with boundary, F θ is

in fact, diffeomorphic to Q := B2n+2
ε ∩ Vf−t where the ball B is bounded by the S2n+1

ε from
earlier and Vf−t = {z ∈ Cn+1 : f(z) = t}. This t can be taken to be a small nonzero number.
One can think of this as perturbing the hypersurface slightly in order to smooth it. In fact,
that’s how the diffeomorphism is established: find the right vector field to flow F θ to Q. Both
the fiber F θ and Q are called the Milnor fiber (since they are diffeomorphic to each other).
See the picture below.
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Example 1.3. Let’s try our hand at a simple example. Let f : C3 → C be defined by
f(x, y, z) = x2 + y2 + z2. As we’ll generalize later, we’ll see that for small nonzero t, f−1(t) ∼=
T ∗S2. In this case, the singularity arises when we let t → 0. We’ll discover that the S2 is
a vanishing cycle in T ∗S2. But away from the zero section, nothing really happens. Thus,
we find that the link K is the unit sphere bundle of T ∗S2. So K ∼= SO(3) which is in turn
diffeomorphic to RP 3. Indeed, it is connected (it should be (n− 2) connected where n = 2).

What can we say about a fiber Fθ of the fibration g : S5
ε \ K → S1? Well, we’ve sort of

cheated: we already know that they are diffeomorphic to T ∗S2. But let’s just state all the
results from above for Fθ anyways. dimR Fθ = 4 and ∂Fθ = K = RP 3. And the homotopy type
of Fθ is some wedge of 2-spheres:

∨µ S2. Here, we see that µ = 1, from the algebraic formula.
Lastly, since Fθ is parallelizable, this tells us that T (T ∗S2) is trivial. It is true that RP 3 is
also parallelizable (all closed, oriented 3-manifolds are) but in general, we cannot conclude
that if a manifold with boundary is parallelizable on the non-boundary part, the boundary is
parallelizable.

1.1 Back Tracking

Let’s look at some of the arguments for why Fθ has the properties it has. A useful fact for
proving Fθ has the homotopy type of a bouquet of spheres is: F θ is homotopy equivalent to
Sε \ F θ. Here is the argument. Take some other angle, say φ; then

Fφ Sε \ F θ

S1 \ {eiθ}

is a fibration. But of course, the base is contractible and so the embedding gives us an isomor-
phism πk(Fφ) ∼= πk(Sε \F θ) for all k. Thus, Fφ and Sε \F θ are homotopy equivalent. But more
over, Fφ is diffeomorphic to Fθ and therefore, latter is homotopy equivalent to Sε \ F θ.

Another result is that Fθ has the homology of a point in dimensions less than n and in
fact, Fθ is (n − 1)-connected. To establish the former, we recall what reduced homology and
Alexander Duality are.

Take the map X → pt. Then the reduced homology H̃i(X) is defined as the kernel of

Hi(X) → Hi(pt) and the reduced cohomology is H̃ i(X) is the cokernel of H i(pt) → H i(X)
(induced from the same map but of course, cohomology is contravariant). Alexander Duality
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states that H̃i(Sε\F θ) ∼= H̃2n−i(F θ). But the latter is zero for 2n− i > n as Milnor establishes

through some other arguments. Thus, for i = 0, ..., n − 1, H̃i(Sε \ F θ) ∼= H̃i(Fθ) = 0. To see
why Fθ is (n− 1) connected, see Milnor’s book.

1.2 Other Results

We now briefly recalled the definition of the Poincaré-Hopf index of a vector field. Let V be a
vector field on an n-manifold M and suppose V vanishes at p. Take a small ball Dn around p
and consider the map u : ∂Dn → Sn which sends x 7→ V (x)/|V (x)|. We can assume that the
ball is small enough that we’re basically in Rn. The Poincaré-Hopf index is the degree of this
map u.

Proposition 1.4 (Milnor). Let ∇f be the gradient vector field of f (with standard metric on
Cn+1). The Poincaré-Hopf index of ∇f at 0 is µ.

Remark: This is another view of µ telling us how complicated the singularity is. The gradient
of f contorts and wraps a small sphere containing 0 around itself µ times.

Now, let’s recall again that K is (n − 2)-connected which means πi(K) = Hi(K) = 0 for
i = 0, ..., n− 2 and πn−1(K) ∼= Hn−1(K). Moreover, the Hurewicz map h : πn(K)→ Hn(K) is
surjective if n ≥ 3. Because of this, we can see that the only homology groups of K that are
nontrivial are Hn−1, Hn (which are Poincaré dual).

Proposition 1.5 (Milnor). Suppose n 6= 2. Then K is homeomorphic to S2n−1 if and only if
K has the homology of S2n−1.

The n = 1 case is not too hard. For n ≥ 3, the proof is made easy in light of Smale’s h-
cobordism theorem which proved the Generalized Poincaré Conjecture. Theorem 1.2 says K is
(n − 2)-connected and so K is simply connected. We may construct an h-cobordism between
K and S2n−1 before applying Smale’s h-cobordism theorem.

Theorem 1.6 (Smale). Let n ≥ 5 and let W be a compact (n + 1)-dimensional h-cobordism
between M and N in the category C=Diff, PL, or Top such that W , M and N are simply
connected. This means W is homotopy equivalent to M×[0, 1]. Then, W is in fact C-isomorphic
to M × [0, 1] and can be the identity on M × {0}.

Here is an example of how this fails for n = 2.

Example 1.7. Let n = 2 and define f : C3 → C as f(z1, z2, z3) = zp1 + zq2 + zr3 where p, q, r are
pairwise coprime. Then let K = Vf∩S5. This is a 3-manifold, called a Brieskorn sphere because
it turns out that it is a homology 3-sphere. However, it always has nontrivial fundamental group
isomorphic to the triangle group 〈x, y, z : xp = yq = zr = xyz = 1〉.

For example, when (p, q, r) = (2, 3, 5), π1(K) is isomorphic to SL(2,F5) which has 120
elements. It is therefore, not homeomorphic to S3. By Perelman and Hamilton’s work, π1(K) =
0 is enough to tell us that K is diffeomorphic to S3 (simply because in dim 3, everything is
smoothable and has only one smooth structure).

Example 1.8. We can obtain even more interesting behavior by studying such intersections.
Let f(t, w, x, y, z) = t2 + w2 + x2 + y3 + z6k−1. Then intersecting f−1(0) ∩ S9

ε gives something
that is topologically S7. Letting k = 1, ..., 28 gives all the exotic smooth structures (and the
standard one).
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2 Picard-Lefschetz Theory

Let f : Cn+1 → C be a holomorphic Morse function. This means that all its critical points are
nondegenerate. Some of the results of smooth Morse theory hold in this context. Holomorphic
Morse functions are dense among holomorphic functions. However, unlike in the smooth setting
where we can define the index of a smooth Morse function by studying the Hessian, because of√
−1, we can always write f(z) = f(p) +

∑n+1 z2k locally around a critical point p.
Also, we cannot study the topology in the same way as over the reals because in R, as we

travel along, we are forced to pass through a critical value. But in C, we can circumvent critical
values. This feature actually gives some very interesting phenomena such as monodromy and
vanishing cycles.

Anyways, because of the Morse chart result, let us assume that

f(z) =
n+1∑
k=1

z2k.

0 is the only singularity; as it turns out for t ∈ C∗, the fiber f−1(t) is symplectomorphic to
T ∗Sn = {ξ + iη ∈ Cn+1 : |ξ|2 = 1, 〈ξ, η〉 = 0} (as seen in the example above).

To see this, let’s just take t = 1 and zk = xk + iyk. Then z2k = x2k− y2k + 2ixkyk which means
that F1 = f−1(1) = {z = x + iy : |x|2 − |y|2 = 1, 〈x, y〉 = 0}. The map F → T ∗Sn defined by
(x, y) 7→ (x/|x|, |x|y) is a symplectomorphism where F has the symplectic form inherited from
Cn+1 and T ∗Sn has the canonical symplectic form. It turns out all the other fibers other than
over 0, are symplectomorphic to F .

Also, the Sn in T ∗Sn shrinks as t → 0, giving a singular fiber f−1(0). Thus, this Sn is
a vanishinig cycle in the homology of the fibers. If we circle around 0 in C via a loop γ(t)
starting at F1, we can define a family of diffeomorphisms ht : F1 → Fγ(t). Then h1 : F1 → F1 is
a self-diffeomorphism (generalized Dehn twist?) and so induces a map on the homology level
h∗1 : H∗(F1) → H∗(F1). Having the homotopy type of T ∗Sn means that the only interesting
homology is in the middle dimension: Hn. If we take homology with compact support, I think
this allows us to consider the fibers as interesting cycles even though they are contractible. In
this way, m := h∗1 : Hn(F1)→ Hn(F1), called the monodromy, can be studied. It turns out, we
can fully understand m by just studying the vanishing cycle.

Example 2.1. Let’s take the example when n = 1. Then f : C2 → C gives generic fibers
T ∗S1, a cylinder. Let α be the zero section and β a fiber of the cylinder. Monodromy does a
Dehn twist along α and so α 7→ α and β 7→ α + β (it could be a minus instead, depending on
orientation of the loop γ).

This discussion works for all sorts of complex manifolds V because it’s a local discussion.
If a holomorphic function has a bad singularity, such as when the Milnor number µ is large, a
small perturbation to a Morse function splits the singularity apart into µ simple singularities.
We can then define a monodromy group by looking at loops in π1(V \ {z1, ..., zµ}). However,
to actually pinpoint where the singularities are is a difficult proposition.
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