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1 Lie Groups

Lemma 1.1. SU(n) is simply connected.

Proof. It is not hard to show that SU(n + 1) acts transitively on S2n+1 ⊂ Cn+1. Also, if we
include SU(n) into SU(n+1) by sending A to a matrix with A in the upper left block, a 1 in the
lower right corner and 0′s elsewhere, then we see that SU(n) stabilizes x⃗ = (0, ...0, 1) ∈ S2n+1.
Thus, we have a fibration and a long exact sequence of homotopy groups:

SU(n) SU(n+ 1)

S2n+1

Since n ≥ 1 and π1(S
2n+1) = π2(S

2n+1) = 0, we get the following LES:

... → π2(S
2n+1) = 0 → π1(SU(n)) → π1(SU(n+ 1)) → 0 = π1(S

2n+1) → ...

So π1(SU(n)) ∼= π1(SU(n + 1). In particular, SU(1) = {1} which is simply connected.
Thus, SU(n) is simply connected for all n ≥ 1.

Proposition 1.2. The map det : U(n) → S1 induces an isomorphism on fundamental groups.

Proof. We get a fibration by considering the kernel of det:

SU(n) U(n)

S1

Once again, we get a LES:

... → π1(SU(n)) = 0 → π1(U(n)) →det∗ π1(S
1) → 0 = π0(SU(n)) → ...

Hence, det∗ : π1(U(n)) → π1(S
1) is an isomorphism.

Proposition 1.3. π2(SU(n)) = 0.

Proof. Using the long exact sequence in the lemma above, we have

... π3(S
2n+1) π2(SU(n)) π2(SU(n+ 1)) π2(S

2n+1) ...

When n = 1, SU(1) = {1} so π2 is trivial. When n ≥ 2, we have that π3(S
2n+1) =

π2(S
2n+1) = 0 (the lowest is π3(S

5) = 0). Thus, for n ≥ 2, π2(SU(n)) ∼= π2(SU(n + 1)). But
SU(2) = S3 and π2(S

3) = 0. Thus, π2(SU(n)) = 0.
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Remark: In fact, Milnor, in his Morse Theory book shows that if G is a connected Lie
group, π2(G) = 0. The proof first relies on a theorem of Iwasawa: every connected Lie
group deformation retracts to its maximal compact Lie subgroup. It then considers a fibration
ΩG → PG → G. Here, PG is the path space of G with paths starting at the identity e ∈ G
and ΩG is the loop space based at e. The long exact sequence shows that πk(G) ∼= πk−1(ΩG).

Equip G with a biinvariant metric (which exists since G is compact). Then, approximate
the space ΩG by a nice (open) subset S of G × ... × G by approximating paths by broken
geodesics. Short enough geodesics are uniquely defined by their end points, so the ends points
of the broken geodesics correspond to the points in S. It is a fact that computing low πk(ΩG)
is the same as computing those of S.

Now, consider the energy functional E on S defined by integrating |γ|2 along the entire
curve γ. This is a Morse function and the critical points are precisely the closed geodesics.
The index of E at a geodesic γ is, by the Morse Index Lemma, the same as the index of γ as
a geodesic in G (the index of a geodesic is defined by an analog to the Hessian for the energy
functional). Now, geodesics on a Lie group are very easy to work with - it’s straight forward
to show that the conjugate points of any geodesic have even index.

But this implies that the index at all critical points is even. And this implies that S has the
homotopy type of a CW complex with only even cells. It follows immediately that π1(S) = 0
and that H2(S) is free (H2(S) = Zt for some t). Quoting the Hurewicz theorem, this implies
π2(S) is Zt.

By the above comments, this gives us both π1(ΩG) = 0 and π2(ΩG) = Zt, from which it
follows that π2(G) = 0 and π3(G) = Zt.

Incidentally, the number t can be computed as follows. The universal cover G̃ of G is a Lie
group in a natural way. It is isomorphic (as a manifold) to a product H × Rn where H is a
compact simply connected group. H splits isomorphically as a product into pieces (all of which
have been classified). The number of such pieces is t.

Proposition 1.4. Let G be a connected Lie group group. Then π1(G) is abelian.

Proof. Let p : G̃ → G be the universal cover of G. Then p is surjective and a Lie group
morphism. Thus, the kernel of p is p−1(e) ∼= π1(G). Being the kernel, it is a normal subgroup
and since G is a manifold, π1(G) is discrete (and must be for a covering to be evenly covering).

Lemma 1.5. Let G be a connected topological group with discrete normal subgroup N . Then
N is in the center of G. A nontrivial closed normal subgroup of a connected simple Lie group
G must also be in the center.

Proof. Fix x ∈ N . Then consider the continuous adjoint map (conjugation): G → N defined
by g 7→ gxg−1. The map does land in N because N is normal. This is not a morphism but
note that e 7→ x. Since N is discrete, G is connected, and this map is continuous, all of G
maps to x. So gxg−1 = x for all g ∈ G means gx = xg for all G. But this holds for all x ∈ N .
Therefore, elements of N commute with all elements of G and so N ⊂ Z(G).

If G is a connected Lie group and N is a closed normal subgroup, then N is a Lie subgroup,
and so its Lie algebra n is an ideal of the Lie algebra g. If g is simple, then all its ideals are
0 which means n = 0, and N must in fact be 0-dimensional and discrete. Then applying the
previous argument, N must in fact be central.

π1(G) is discrete and normal in G̃ which is connected. By this lemma, π1(G) ⊂ Z(G̃) and
is abelian.

Here is an alternative proof:

Proof. Let G be a connected Lie group. Consider the fibration of the classifying space with the
total space:
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G EG

BG

We get a long exact sequence of homotopy groups. Recall that EG is contractible. Thus,
we have

... → π2(EG) = 0 → π2(BG) → π1(G) → 0 = π1(EG) → ...

So π2(BG) ∼= π1(G); since π2 is abelian, then π1(G) is abelian.

There is also a third proof which is more general.

Lemma 1.6 (Eckmann-Hilton). : Let S be a set with two binary operations ◦ and ∗ which both
have units 1◦ and 1∗. Moreover, suppose that for all elements a, b, c, d ∈ S, (a ◦ b) ∗ (c ◦ d) =
(a ∗ c) ◦ (b ∗ d). Note that b and c have exchanged places. We’ll say that this equation means
that first operation is a homomorphism with respect to the second operation. Then the following
hold:

1. The second operation is a homomorphism with respect to the first.

2. 1◦ = i∗.

3. a ◦ b = a ∗ b for all a, b ∈ S. So the operations are the same.

4. The operation is commutative.

5. The operation is associative.

Proof. (1) follows just be reading the equation from right to left. For (2), observe that 1◦ =
1◦ ◦ 1◦ = (1∗ ∗ 1◦) ◦ (1◦ ∗ 1∗) = (1∗ ◦ 1◦) ∗ (1◦ ◦ 1∗) = 1 ∗ ∗1∗ = 1∗. Let’s call the shared unit
1. For (3), a ∗ b = (a ◦ 1) ∗ (1 ◦ b) = (a ∗ 1) ◦ (1 ∗ b) = a ◦ b. From now on, let’s just use ab to
denote the binary operation on a and b.

For (4), ab = (1a)(b1) = (1b)(a1) = ba. Lastly, for (5), (ab)c = (ab)(1c) = (a1)(bc) =
a(bc).

Proposition 1.7. Let G be a topological group with identity denoted by e. Then π1(G, e) is
abelian.

Proof. Observe that π1(G, e) has two operations because G is a topological group. There’s
the concatenation of paths which we have for any kind of fundamental group. And we have
pointwise multiplication of paths because of the multiplication from G. That is, take loops α, β
and define (α · β)(t) := α(t) · β(t). One should show that the operation works on homotopy
classes but let’s just take that for granted.

Observe if α, β, γ, δ are loops based at the identity e, then (α ∗ β) · (γ ∗ δ) is constructed by
going along α · γ twice as fast and then concatenation β · δ, also going twice as fast. But that
is precisely (α · γ) ∗ (β · δ), on the nose (we’re not even considering homotopy here). By the
Eckmann-Hilton argument above, π1(G) is abelian.

Here is an example:

Example 1.8. Let f : SU(2) → G be a Lie group morphism. Its kernel is a closed normal
subgroup (since f is continuous and the kernel is a preimage of 1) and is either trivial, two
elements (the centralizer ±1), or all of SU(2). I’m using one of the lemmas above to show that
nontrivial closed normal subgroups must be in the centralizer.
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In the first two cases with finite kernel, then the induced map on Lie algebras is injective
as the kernel of df is the Lie subalgebra (and ideal) of ker f . In which case, the pullback of
the Killing form of G is a nonzero multiple of the Killing form of SU(2). This is by Cartan’s
criterion: an ideal of a semisimple Lie algebra is again a semisimple algebra and the Killing
form of a semisimple Lie algebra is non-degenerate.

Now, the 3-form K([x, y], z) constructed from the Killing form K generates H3
dR of a simply

connected compact simple Lie group G (by Hurewicz, since π1 = π2 = 0, H3
dR

∼= π3(G)⊗ R).
Hence a Lie group morphism f : SU(2) → G induces a nullhomotopic map [f ] ∈ π3(G) if

and only if it is a trivial Lie group morphism.

2 The Modular Group: SL(2,Z)

2.1 The Upper Half Plane

Let H denote the upper half plane in C without including the real line. Then, we may consider
the action of SL(2,R) on H, not by the usual action, but by

A =

(
a b
c d

)
, ad− bc = 1 then A · z =

az + b

cz + d
.

This is a group action as composing Möbius transformations amounts to multiplying matrices
in SL(2,R). Of course, A and −A have the same group action in fact, so we could consider
PSL(2,R) = SL(2,R)/{±I} instead. Also, it is not hard to check that if Im(z) > 0, then
Im(A · z) > 0. These transformations are all orientation-preserving as det = +1.

Reducing our attention to SL(2,Z), we claim that this group is generated by two matrices:

S =

(
0 1
−1 0

)
, T =

(
1 1
0 1

)
.

First, observe that S2 = − id while T n =

(
1 n
0 1

)
and (ST )3 = id. Also, observe that S

corresponds to the map z 7→ −1/z and T corresponds to z 7→ z + 1. S is like inversion across
the unit circle and then composing with an antipodal map. T is just translation.

Now, let G = ⟨S, T ⟩ and A ∈ SL(2,Z) as above. We show that G = SL(2,Z). Note that

SA =

(
c d
−a −b

)
, T nA =

(
a+ nc b+ nd

c d

)
.

Thus, after multipying by S if needed, we may assume that the entries of A satisfy |a| ≥ |c|.
By the division theorem, a = qc+ r, 0 ≤ r < |c|. Then T−qA has, as its upper left hand entry,
r < |c|. Multiplying by S interchanges, up to a sign, r and c. Reapplying the division theorem
to c and r, we can repeat this process of reducing the upper left hand corner. At the end of
the process, we’ll have a matrix of the form

...ST−qkT−qk−1 ...ST−q1A = ΓA =

(
±1 m
0 ±1

)
= Tm,−T−m,Γ ∈ G.

Of course, the diagonal entries have the same sign as det = +1. Since Γ, Tm,−T−m = S2T−m ∈
G, so then is A. Thus, G = SL(2,Z). it turns out, that if we mod the half plane by SL(2,Z),
we get a fundamental domain {z ∈ H : |z| > 1, |Re(z)| < 1/2}. See the figure below; it is from
Keith Conrad’s notes on SL(2,Z). We can use this domain to tessellate the upper half plane
using S, T in a way, reminiscent of hyperbolic fashion. They are of course, linked.
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SL(2,Z) acting on the fundamental domain

2.2 The Torus

Let SL(2,Z) act on H1(T
2,Z) ∼= Z2 in the usual linear way. Let α = (1, 0) and β = (0, 1)

be the generators; a latitudinal and longitudinal circle, respectively. Apparently, the terms
toroidal and poloidal are also used, respectively. Then S sends (α, β) 7→ (β,−α) while T sends
(α, β) 7→ (α + β, β). What T does is takes α and gives it a full rotation along β. One can
picture what this does to the torus: cut the torus along β to get a cylinder; twist one end of
the cylinder by 2π and then glue it back. Thus, α is made to twist around the torus once; so β
is sent back to β but now α has this twist which in homology means α 7→ α+ β; exactly what
we wrote before. This is called a Dehn twist. The figure below is from Wikipedia.

A Dehn Twist; the green (horizontal) line is α, the red (vertical) circle is β

As it turns out, SL(2,Z) is the mapping class group of T 2; a mapping class group of a Riemann
surface Σ is the group of homeomorphisms modulo continuous deformations and is sometimes
called the Teichmüller group. As one suspects, because of Heegard decompositions for 3 man-
ifolds, these groups are important. How does SL(2,Z) act on T 2? We’ve already said that T
twists the torus around α. S can be thought of as puncturing the torus and then turning it
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inside out (see animation on the Wikipedia page for torus.) But we can also Dehn twist around
β and this gives us

Tα := T =

(
1 1
0 1

)
;Tβ =

(
1 0
1 1

)
Observe that T−1

α TβT
−1
α = S. So the mapping class group can be generated from these two

Dehn twists.
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