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These are some notes I took to try and flesh out some of the ideas Atiyah mentions in this
paper from a mathematical proceeding in honor of Hermann Weyl.

1 Introduction

One major idea in studying 3- and 4-manifolds is to “cut them in half.” For example, we
might take a self-indexing Morse function f : Y → [0, 3] on a closed, oriented 3-manifold and
thus, obtain a Heegaard splitting. We then do Heegaard Floer theory on the surface f−1(3/2).
Similarly, many 4-manifolds do not decompose as a connected sum by gluing along an S3 but
do decompose as a pseudo-connected sum along a homology 3-sphere.

2 Casson Invariant

Let Y be an oriented homology 3-sphere. This means H1(Y ) = 0 but of course, π1(Y ) could
be nontrivial. As we know now, if π1(Y ) = 0, then Y ∼= S3. The Casson invariant λ(Y ) is
roughly defined as half the number of irreducible representations π1(Y )→ SU(2). What is the
meaning of this if SU(2) is not a vector space? The meaning is that we’re looking at dim 2
complex irreducible representations ρ : π1(Y ) → Aut(C2) but we’re asking for im ρ ⊂ SU(2).
We’ll count conjugate representations as being the same so really, we mod this set out by SU(2)
under conjugation.

2.1 Irreducible Representations

Now, H1(Y ) is the abelianization of π1(Y ) and is zero. This means π1(Y ) = [π1(Y ), π1(Y )]].
Atiyah claims that the only reducible representation in SU(2) is the trivial one. How shall
we understand this? Recall that a representation is irreducible if it doesn’t have any sub-
representation. So suppose that there were a sub-representation; i.e. π1(Y ) acts on some
V ⊂ C2 invariantly and dimC V = 1. This splits C2 = V ⊕ W . The only actions here is
mutiplication by scalars. However, π1 = [π1, π1]. Take an element of the form [a, b] = a−1b−1ab;
since multiplication by scalars is commutative, then in fact, [a, b] acts trivially by 1. Then all
the commutators act trivially and so π1(Y ) acts on V trivially. And if we quotient out by V , we
have π1 acting on W = C2/V . But this action then is also trivial. Therefore, if a representation
is reducible, it is in fact, trivial. Hence, he says, “the only reducible representation in SU(2) is
the trivial one, so irreducible = nontrivial.”
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2.2 Flat Connections

How does one count such representations? Taubes showed that we can identify these represen-
tations with flat connections on the trivial bundle Y × SU(2). Recall that a connection is
flat if and only if the holonomy depends only on the homotopy classes of loops.

Let A be the space of SU(2)-connections for the trivial bundle over Y and G the group
of gauge transformation; that’s just maps Y → SU(2) or, since the bundle is trivial, sections
of the trivial bundle. We’ll let C = A/G. A reducible connection is one that has nontrivial
stabilizer under gauge transformations. The space C is, away from singularities formed by
reducible connections, an infinite dimensional manifold.

2.3 Constructing a Closed 1-form F

Atiyah says that we can define a natural 1-form F on C. A 1-form, restricted to a point, should
take in vectors. Somehow, we’re able to identify tangent vectors on A with su(2) valued 1-forms
on Y . Then, for A ∈ A, we can take it’s curvature 2-form FA which is also su(2) valued. So
take ω ∈ TAA; I think we define F (ω) =

∫
Y
ω ∧ FA. Moreover, the claim is that the Bianchi

identity, which says dAFA = 0, says that F is G invariant and so descends to C.
The zeros of F are the flat connections and so a count of irreducible representations

π1(Y ) → SU(2) is a count of the zeros of F . It seems that the flat connections, modulo
gauge transformations is finite and so countable but we need to be careful about the reducible
connections. Hence, Fredholm perturbation is necessary.

With regards to this statement about representations of groups whose abelianization is
zero. In general, I think there is little we can say but here, we are looking specifically at 2 dim
representations. My initial thought had been, if G is an abelian group, then all its irreducible
representations are 1-dim. So any larger representation will always contain a subrepresentation.
The abelianization, in some sense, measures how abelian a group is. If the abelianization is the
group itself, then the group is abelian to start with. If the abelianization is small, then there are
many non-commuting elements. My thought was: “Highly abelian groups give us smaller irreps
while highly non-abelian groups can give many irreps which have larger dimension.” I don’t
know if this is a good guiding principle. Probably not, except when we restrict our attention
to 2 dim irreps.

3 Morse Theory

3.1 Witten’s Interpretation

Witten has an interesting take on Morse theory that I’ll like to understand. Let M be a compact
manifold M with Morse function f . We’ll think of homology here as Hodge-de Rham homology,
represented by harmonic forms. But we can modify our Laplacian by f and real parameter t.
Let’s replace d with dt := e−tfd etf and d∗ with d∗t := etfd∗ e−tf . So multiply by some function,
then apply d or d∗. Let ∆t = dtd

∗
t + d∗tdt. With some computations, we can show that

∆t = ∆ + t2|∇f |2 +
∑
i,j

∂2f

∂φi∂φj
[a∗i, aj].

Forgetting about the meaning of the last term, just consider a zero eigenform (“harmonic”
forms for the deformed Laplacian) α of ∆t; i.e. ∆tα = 0. If t is large, note that in order for
t2|∇f |2α to not be too big, we need α to vanish away from the critical points of f since, it is
only at the critical points of f is ∇f = 0. Put another way, α should be concentrated near
the critical points of f . In the limit, t→∞, α is sort of like a Dirac delta-form at each of the
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critical points. These types of eigenforms are called classical ground states. The picture I
have in mind of the potential t2|∇f |2 →∞ is a potential energy well where the potential gets
larger and larger.

Potential Energy Well

Let P,Q be two critical points of f with the index of Q being one less than that of P .
Atiyah says that the eigenform associated to a critical point Q of f has an exponentially small
correction due to Q which can approximately be computed by using the trajectories of ∇f from
P to Q. This is called quantum mechanical tunneling, which describes the probability
of the transition P to Q. The point is that a ground state is sort of stable and to leave the
potential energy well requires too much energy. But quantum mechanically, there’s a probability
of moving to another ground state. Thus, this is Witten’s QM interpretation of the differential
∂ in the Morse chain complex.

3.2 Hydrogen Fusion

By the way, a classic example of quantum tunneling is in the sun. The surface temperature of
the sun is 5,778 K and its core temperature is 15.7 million K. But classically, the temperatures
needed for hydrogen fusion to occur is 100 million K, far higher. So how can the sun undergo
hydrogen fusion? The answer is quantum tunneling. I think the idea is that energy and time are
“sort of dual” to each other, similar to how position and momentum are dual in Heisenberg’s
Uncertainty Principle. Anyways, there is some probability of a pair of nucleons being in some
other stable state, such as being bound as deuterium instead of separated particles. So though
it doesn’t have enough energy to classically cross the energy barrier, it “tunnels” through the
barrier.

From Wikipedia: “The proton–proton chain occurs around 9.2× 1037 times each second in
the core, converting about 3.7 × 1038 protons into alpha particles every second (out of a total
of ∼ 8.9× 1056 free protons in the Sun), or about 6.2× 1011 kg/s. Fusing four free protons into
a single alpha particle releases around 0.7% of the fused mass as energy, so the Sun releases
energy at the mass–energy conversion rate of 4.26 million metric tons per second.”
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4 Floer Homology

4.1 The Chern-Simons Functional

The 1-form we saw in section 1 is in fact closed. Thus, locally, it is the differential of a well-
known function on C: the Chern-Simons functional. Let A0 be the trivial connection on the
trivial bundle Y × SU(2) and let At = (1− t)A+ tA0, for t ∈ [0, 1]. At can be thought of as a
connection on the 4-manifold Y × I.

f(A) =
1

8π2

∫
Y×I

tr |FAt |2 vol =
1

8π2

∫
Y×I

trFAt ∧ ∗FAt ,

where FAt is the curvature of At on Y × I. We will soon just drop the t’s. If we were looking
at this integral but on a closed 4-manifold M , the integral will always give us the 2nd Chern
class of M which is also the Euler class. This is a rather remarkable result. It says that for
closed 4-manifolds, we may obtain topological information when our starting point is geometric
information.

In our situation, f(A) is invariant under action by G0 ⊂ G, the identity component. Since
G/G0 = Z, f(A) changes by integers under the full group. To avoid this issue, f is well-defined
on R/Z. Why is it that G/G0 = Z? Since Y and SU(2) are both connected, compact, oriented
3-manifolds, then we can discuss the degree of a map. Degree is a homotopy invariant. If I am
not mistaken, since A can be modeled on an affine space and homotopy classes of elements of
G are determined by degree, then π1(C) = Z.

Now, we may try applying Morse theory to this setting but we’ll run into two main problems:

1. f takes values in R/Z instead of R.

2. The Hessian of f at a critical point will give a bilinear form whose positive and negative
eigenspaces are both infinite dimensional.

The first problem can be circumvented if we take a covering space C0 = A/G0. Recall that
the identity component of a topological group is always a closed normal topological subgroup.

4.2 Spectral Flow

To understand the second issue, let us take a detour into a different infinite dimensional setting.
One setting of Morse theory is that of geodesics of a Riemannian manifold. The Hessian in
this setting, if we view it as an operator rather than a quadratic form, is of Laplace type: a
second order elliptic operator. Hence, it’s negative eigenvalues are bounded below and so n−,
the dimension of the negative eigenspace, is finite. Thus, Morse theory can be done even in
this infinite dimensional setting. However, when we look at the setting of flat connections, we
find that the Hessian is of Dirac type: it is of first order and we have no such lower bounds
on the negative eigenvalues.

The trick is to try and define some relative Morse index of critical points P and Q which,
intuitively, should be the dimension of the unstable manifold of P intersected with the stable
manifold of Q. Of course, the hope is that the dimension is finite. We would then denote this
quantity as n−

P,Q. Let’s proceed in steps.

1. Fix a metric on Y and extend the Hessians at critical points to a continuous family of
self-adjoint Dirac type operators; this is parametrized by C ∈ C.

2. Then, we may consider a path of operators Ht between HP and HQ by considering a path
between critical points P,Q of f . We count the net number of negative eigenvalues of
HP that cross over and end up as a positive eigenvalue of HQ. This integer is called the
spectral flow and only depends on the homotopy class of the path from P to Q.
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3. The spectral flow would be well-defined if C were simply-connected. Since it is not, we
consider the spectral flow lifted to C0. This step involves seeing that n−

P,Q is defined modulo
the spectral flow around a generating closed loop in C. Above, I argue why π1(C) = Z.

4. The spectral flow around a closed loop can be computed from the index theorem of Atiyah
and Singer on Y ×S1. We find that the answer is 8. Thus, this will give us a Z8 grading.

Image from Floer Homology Groups for Homology Three-Spheres by Peter Braam

4.3 The Chain Complex

We now assume that everything is nondegenerate or that some perturbation à la Taubes gives
us nondegeneracy. We proceed by defining chain groups C∗ indexed modulo 8. The differential
∂ will be defined via a count of trajectories between critical points P and Q, whose indices differ
by one. Lastly, we’ll want to prove that the homology groups are independent of perturbations
and such. Before giving more detail about defining ∂, note that there is no obvious choice for
H0; we see the English meaning for saying Z8 is cyclic; there’s not starting point! However, if
we’re careful and mark the trivial representation, then there is a way to identify H0.

Now to defining ∂. As expected, we would like to count trajectories of ∇f . What exactly
does this mean? The gradient is defined like so: (df)A(X) =

∫
X ∧ ∗FA = (X,∇f)L2 =∫

〈X,∇f〉 vol. Therefore, ∇f = ∗FA. A trajectory of ∇f should then satisfy the equation

dA

ds
= − ∗ FA.

This equation, interpreted on the infinite cylinder Y × R is precisely the anti-self dual
equation which defines instantons. The boundary conditions were impose here are that as
s→ ±∞, the flat connections converge to P andQ, respectively. Taking Witten’s interpretation
of ∂ as a tunneling effect, we are using instantons to tunnel from the ground state (or vacuum)
of one flat connection to the ground state of another. This is precisely the way physicists use
instantons and was their original motivation. Witten even uses the word “instanton” in his
paper Supersymmetry and Morse Theory. After quotienting by translations, we should obtain
a zero dimensional moduli space of trajectories and thus, be able to count.

Of course, there are technicalities to be wary of. Counting the trajectories with sign is
one such caveat. The modulo 8 may be viewed as a refinement of the modulo 2 labeling that
determines the sign of the Casson invariant. But even more pertinent are questions about
the compactness of the moduli spaces of trajectories and what happens to compactness as we
perturb. And also how to show ∂2 = 0. The work of Donaldson, Taubes, and Uhlenbeck tells
us that things work out. Thus, we have a new invariant for homology 3-spheres in the form of
homology groups HFq(Y ), q ∈ Z8.
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Just as in the finite dimensional case where taking −f instead of f gives Poincaré duality,
this occurs here as well. Depending on the orientation of Y , we have dual homology groups
HF+(Y ) and HF−(Y ).

Moreover, twice the Casson invariant is the Euler characteristic:

2λ(Y ) =
7∑

q=0

(−1)q dimHF+
q (Y ).

5 Relation with 2 Dimensions

We can, of course, relate this to 2 dimensions if we take a Heegaard splitting; use a self-indexing
Morse function on Y 3. Let X be the smooth surface that we obtain with genus g and Y +, Y −

be the g-handlebodies with X as boundary. π1(X) is generated by A1, ..., Ag, B1, ..., Bg and, for
example, the map π1(X)→ π1(Y

+) sends all the Bi → 1 and the images of Ai freely generate
π1(Y

+). A similar story holds for π1(Y
−).

Casson’s idea for defining λ(Y ) was to use the following diagram.

π1(X) π1(Y
+)

π1(Y
−) π1(Y )

All the maps are induced by inclusion. Then, a representation π1(Y )→ SU(2) is the same as
a pair of representations of π1(Y

±) which agree when pulled-back on π1(X). These classes of
representations form a moduli space M which, after removing the reducible representations,
is a 6g − 6 (real) dimensional Kähler manifold. We can define a symplectic form on this M ,
defined on the generators Ai, Bk’s.

I believe we need to assume g ≥ 2. The representations of X which extend to Y ± give
Lagrangian submanifolds L± ⊂ M of dimension 3g − 3. We can define the Casson invariant
by 2λ(Y ) = L+ ∩ L−. Question: Is this true? Or do we need Lagrangian Floer homology
HF∗(L

+, L−)? I think the Atiyah-Floer conjecture is for a general 3-manifold Y , not necessarily
a homology sphere, the Lagrangian Floer homology HF∗(L

+, L−) should be isomorphic to the
instanton Floer homology we defined previously. The theory probably works when H1(Y ) 6= 0
and homology 3-spheres may be the examples that motivated the formulation of this conjecture.

Another questions the grading on Lagrangian Floer theory is modulo 2N where N is the
minimal Chern number while for a homology 3-sphere, the grading is mod 8. So is the minimal
Chern number N = 4 for whatever the surface X in Y turns out to be?

Geometrically, a path on M is a 1-parameter family of flat connections on X. This can be
viewed as a single connection on X ×R. The boundary conditions coming from our considera-
tions of L±, say that the connection should extend over Y ± as t→ ±∞. Thus, the symplectic
theory for paths in M should be relaed to a limiting case of the Floer theory for the space C of
connections on Y . It’s sort of like stretching Y out where there ends are Y ± and are connected
by X × R.

6 Donaldson Invariants

6.1 4-Manifold Theory since Gauge Theory

Our setting now is that of an oriented, simply connected, closed smooth 4-manifold Z; b+2 and
b−2 will be the ± terms in the diagonalization of the intersection form. We’ll also assume b+2 > 1
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is odd. If Z is a complex algebraic surface, a theorem of Hodge tells us that b+2 = 1 + 2pg where
pg is the geometric genus. Since we’re assuming that Z is nonsingular, we take pg = h2,0; the
dimension of closed holomorphic 2-forms. In general, pg = hn,0; a quantity to describe how
many holomorphic volume forms we have. So all we need is for pg > 0 for Z to be in our setting.

The Donaldson invariants are a sequence of integer polynomials φk on H2(Z) where k > k0
is sufficiently large and the degree of φk is d(k) = 4k − 3(b+2 + 1)/2. Here are two important
results of Donaldson.

Theorem 6.1. If Z = Z1#Z2 is a connected sum with b+2 (Zi) 6= 0 for i = 1, 2, then φk(Z) ≡ 0
for all k.

Theorem 6.2. If Z is algebraic, then for k > k1(Z) (so for k larger than some constant
depending on Z), φk(Z) 6≡ 0

These two theorems in conjunction show that if we view an algebraic surface as just a smooth
manifold, it is indecomposable. Of course we always have blowups, say Bl0P2, but that decom-

poses into P2#P2
and b+2 (P2

) = 0.
In general, it is hard to compute these invariants which arise from studying instantons.

However, for algebraic surfaces, Donaldson showed that the moduli space of bundles with anti
self-dual connection and the moduli space of stable holomorphic bundles effectively coincide.
From there, we really just need to study stable bundles.

For a nonalgebraic 4-manifold Z, suppose its quadratic form Q decomposes as a direct sum
Q = Q1⊕Q2 with b+2 (Qi) 6= 0 for i = 1, 2. If φk(Z) 6≡ 0 for all k, then Z cannot be decomposed
smoothly. Interestingly, M. Freedman showed that there exist topological manifolds Z1, Z2 with
intersection forms Q1, Q2 such that Z = Z1#Z2 as a topological manifold. Of course, the con-
nected sum has a neck which looks like S3×I. However, when it comes to these indecomposable
4-manifolds, it is known that instead of decomposing along S3, we can decompose along some
homology 3-sphere Y which induces the algebraic decomposition Q = Q1⊕Q2. This shows that
the indecomposability of Z is somehow reflected in the nontriviality of the homology 3-sphere
Y .

Let us now move towards seeing how Donaldson related his invariants on Z to Floer ho-
mology groups on Y . We begin by recalling the definition of Donaldson invariants φk. We fix
a Riemannian metrix Z, a positive integer k, and consider the space Mk(Z) of k-instantons on
Z. A k-instanton is a connection A whose curvature FA satisfies ∗FA = −FA and satisfies

1

8π2

∫
trFA ∧ ∗FA = k.

6.2 Detour: the 2nd Chern Class

Let me make a detour here. Chern-Weil theory tells us that the integral above is in fact,
the 2nd Chern class of the principal SU(2) bundle. This is remarkable since, once we fix a
SU(2) bundle P → Z, all of its connections, when we integrate their curvature as in the above
expression, give the same constant. Moreover, c2 completely classifies SU(2) bundles over a
closed, oriented 4-manifold. To see why, recall that isomorphism classes of SU(2) bundles are
in 1-1 correspondence with homotopy classes of maps Z → BSU(2). Using the long exact
sequence of homotopy groups for the fibration G → EG → BG and also using the fact that
EG is contractible, we can show that πk+1(BG) = πk(G). But G = SU(2) ∼= S3 and so
π1, π2, π3 of BSU(2) are all trivial and π4(BSU(2)) = Z. For anything higher, it doesn’t really
matter since we’re looking at 4-manifolds. So effectively, BSU(2) behaves like the Eilenberg-
MacLane space K(Z, 4) for 4-manifolds. On the other hand, the homotopy classes of maps
Z → K(Z, 4) is identified with H4(Z,Z) = Z. There is a universal second Chern class
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c2 : BSU(2) → K(Z, 4); and a classifying map f : Z → BSU(2) can now be thought of as
an element of H4(Z,Z) via c2. The upshot is that c2 completely classifies all principal SU(2)
bundles over a 4-manifold Z.

6.3 The Donaldson Polynomials

Let’s return to instantons. Mk(Z) is a manifold for generic metrics and has dimension 2d(k).
If d(k) = 0, then we can count them and treat that as a Donaldson invariant (how do we
have compactness?). If I’m not mistaken, when k = 1, this is the setting in which Donaldson
proved the diagonalization theorem. For d(k) > 0, fix d(k) spherical cycles αi : S2 → Z with
homology classes [αi]. Each cycle defines a codimension 2 submanifold Ai of Mk (not clear
how). The submanifold consists of connections which, when pulled back to S2 via αi, are
special connections. This just means they define nontrivial holomorphic bundles. I think the
point is that in complex dim 2, a unitary connection defines a holomorphic structure.

Now, consider the intersection number A1 ∩ ... ∩ Ad as a function of α1, ..., αd. It depends
only on the homology classes and its values define φk([α1], ..., [αd]) as a symmetric d-linear
function on H2(Z). Mk is not compact so we have to be careful about what happens at ∞.
Somehow, this is why we need the condition that k > k0. The idea is that we can compactify
Mk but we want to do so by adding in some space of codim ≥ 2 so that we can define, with no
further trouble, intersection numbers via the fundamental class [Mk].

7 Relation to Floer Homology

Since we can have a decomposition of Z along a homology 3-sphere Y , we try studying the
instanton equations on Z± and then matching on the boundary Y .

7.1 A Prototype

Consider an analogous prototype. Cutting S2 along the equator, we can consider holomorphic
functions on the hemispheres and compare their boundary values. The space of holomorphic
functions on a disk is called the Hardy space. So we’ll have two of them: H± and H+ ∩ H−

is just the constant functions since the only holomorphic functions that agree on the boundary
equator would have to be constant.

Let’s change the prototype to be nonlinear now. We look at holomorphic maps S2 → P
where P is a complex manifold, say projective space. When we cut S2, a holomorphic map
in either hemisphere is determined by its restriction to S1 which is a then a map S1 → P ; so
the holomorphic map is an element of the free loop space LP . Thus, we get H± subspaces of
LP but they are not linear. Still, the global holomorphic maps are given by H+ ∩ H− and
this should be finite dimensional. Linearizing the problem, we can recover the holomorphic
maps S2 → P . Atiyah says that it is for this reason, we may think of H± as ∞ dimensional
manifolds of approximately “half” the dimension of LP because intersecting them gives a finite
dimensional subspace.

7.2 Lagrangian Floer Approach to φk

Let us return to the 4-dim situation. The instanton equations are 1st order so a solution is
determined by the appropriate boundary data. Here, that’s just a connection on Y , up to gauge
equivalence. Thus, we should look at Σ± ⊂ C(Y ), the spaces consisting of boundary values of
solutions to instanton equations in Z±. The intersection Σ+ ∩ Σ− give global solutions on Z.
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For simplicity, suppose d(k) = 0. The Donaldson invariant is an integer in this case and
describes the algebraic number of k-instantons on Z. This number should be computed as the
intersection number of Σ+ and Σ−. This requires some kind of homology theory for C(Y ) in
which Σ± are cycles that we can intersect. The Floer homology groups HF±(Y ) provide this
framework that we seek.

Let’s draw on a picture from Morse theory. Suppose we have a geometric cycle α and we
want to associate to it a cycle in the Morse complex. We can push it along the gradient flow
and see which critical points it gets stuck on; i.e. the gradient flow doesn’t push some points of
α any further, after it “hangs” on the critical point. If β is a cycle of complementary dimension,
we can deform β along the ascending gradient flow of f and see which critical points it gets
stuck on. Then the intersection number α · β can be reduced to local calculations near the
critical points, in Morse charts.

For the ∞ dimensional manifold C, the gradient flows are only defined for appropriately
restricted initial data because we’re solving a heat equation for an operator which is not bounded
below nor above. However, we may use cycles Σ±. They provide the right data for the two
opposite flows. This is what Donaldson does: assign classes [Σ+] ∈ HF+(Y ) and [Σ−] ∈
HF−(Y ). Their pairing, using the Poincaré duality map HF+(Y ) ⊗ HF−(Y ) → Z gives the
Donaldson invariant φk(Z).

This was all done under the assumption of d(k) = 0. When d(k) > 0, we can do something
similar. Given classes [αi] inH2(Z) for i = 1, ..., d, choose an integer r ∈ [0, d] and representative
spherical cycles αi : S2 → Z+, i = 1, ..., r and αj : S2 → Z−, j = r + 1, ..., d.

The boundary values of instantons on Z+ which are special on α1, ..., αr (pullback to define
nontrivial holomorphic bundles of S2) define some kind of a “cycle” Σ+(α1, ..., αr) ⊂ C, and
hence a Floer homology class [Σ+(α1, ..., αr)] ∈ HF+(Y ). Similarly, define [Σ−(αr+1, ..., αd)] ∈
HF−(Y ). Pairing these defines a morphism of symmetric products

Sr(H2(Y
+))⊗ Sd−r(H2(Z

−))→ Z.

Since H2(Z) = H2(Z
+)⊕H2(Z

−), then

Sd(Z) =
d⊕

r=0

Sr(H2(Z
+))⊗ Sd−r(H2(Z

−)).

By summing over r, we have a morphism Sd(H2(Z)) → Z. Donaldson shows that this is in
fact, his invariant φk. So we have a way to think of Donaldson invariants in a Floer theoretic
way.

It seems that if we have a manifold Z+ with boundary being a homology 3-sphere, there is
a sequence of polynomials φr on H2(Z

+ with values in HF+(Y ). Then, we can get some kind
of a relative Donaldson polynomial on this manifold with boundary.

Also, if Y is the standard 3-shere so that Z is the usual connected sum, then HF+(Y ) = 0
and Theorem 6.1 follows pretty quickly from computing φk(Z) using this Floer theoretic picture.
Conversely, if we know that Z is indecomposable, then it follows that HF+(Y ) 6= 0. So Theorem
6.2 implies the nontriviality of Floer homology groups for many homology 3-spheres which come
about in a pseudo-decomposition of algebraic surfaces. This is a nice way to show that there
are homology 3-spheres not diffeomorphic to the standard S3.

8 Concluding Remarks

8.1 Multiple Definitions for Singular Homology

We have various ways of defining homology groups depending on the choice of chain complex:
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1. The Witten complex of a Morse function

2. The classical chain complex of geometrically defined cycles

3. de Rham complex

4. Hodge theory

Witten’s ideas relate (1) to (4) while pushing cycles along the gradient flow relates (1) and
(2). (3) and (4) are related by elliptic theory. Floer applied ideas of (1) to ∞ dimensional
manifolds by treating the Chern-Simons functional and other action functionals like Morse
functions. Donaldson’s work is more like (2), using cycles Σ±.

8.2 Middle Dimensions

Atiyah spends some time to make this idea of “middle dimension” more rigorous. Consider a
product space of two ∞ dimensional spaces: S+ × S−. We can define ordinary homology by
taking finite-dim cycles in both factors or ordinary cohomology by taking finite-codim cycles in
both factors. But there are also cycles of the type (cofinite)×(finite) or (finite)×(cofinite). This
gives a sense of middle dimension homology, the first is “positive” and the other “negative.”

But since our spaces, such as C, are generally not products (only locally), the middle-
dimensional homology cannot reduce to ordinary homology or cohomology by factorization.
This means that Floer homology groups are, from a topological point of view, something es-
sentially new.

8.3 ∞ Dimensional de Rham Theory and QFT

Suppose we have an infinite orthonormal basis en, n ∈ Z, for some space TC given by the
spectrum of HC so that T+

C is spanned by n ≥ 0. The “volume element” of T+
C is ω = e0∧e1∧ ...

We also have infinite wedge products which differ from ω in only finitely many terms. Dualizing
and taking linear combinations should define the “positive” differential forms Ω+ at C. We can
do something similar for defining Ω−

The semi-infinite volume element ω is familiar in physics as the vacuum vector of a Fermionic
Fock space. Ω+ are the fields of a Fermionic quantum field theory. Let ∆+

f be a Laplacian where
f is the Chern-Simons functional. This should be the Hamiltonian of the QFT and the harmonic
forms are the ground states. Purely formally then, and ignoring the ground state, the Floer
homology groups HF + (Y ) are the ground states of the QFT with Hamiltonian ∆+

f . Atiyah
says this discussion is found implicitly in Witten’s Supersymmetry and Morse Theory. Witten
knows about QFT as middle-dimensional homology.

Apparently this discussion is not rigorous for 3 + 1 QFT, especially as there is no rigorous
definition for Hamiltonians. But Floer’s symplectic theory for paths in a symplectic manifold
is a 1 + 1 QFT and that’s in better shape and has been investigated in string theory.

8.4 Open Problems (as of 1988)

1. The Atiyah-Floer conjecture: show that instanton Floer homology coincides with La-
grangian Floer theory done on a Heegaard splitting. This would appear as a comparison
of 3 + 1 and 1 + 1 QFTs.

2. Produce an algorithm for computing HF (Y ) which generalizes Casson’s algorithm.

3. Find a way to compute Donaldson invariants S∗(H2(Z
+))→ HF+(Y ) when Y = ∂Z+.
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4. Find a connection with the link invariants of Vaughan Jones.

To see why the last suggestion is reasonable, Atiyah lists some properties shared by Floer
homology and the Jones polynomial.

1. Both are subtle 3-dim invariants

2. They are sensitive to orientation, unlike the Alexander polynomial.

3. They depend on Lie groups

4. There are 2-dim schemes for computing these 3-dim invariants.

5. The variable in the Alexander polynomial corresponds to π1(S
1) but the variable in the

Jones polynomials appears to relate to π3(S
3).

6. Both have deep connections with physics, namely QFT and statistical mechanics.
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