AIM PROBLEM LIST
DAVID STAPLETON

Question 1. Suppose A is an ample (or nef) vector bundle. Is each c_kA pseudo-effective? (Fulton-Lazarsfeld showed they are nef, and the answer is yes if E is globally generated.)

(Ex. If X is an abelian variety)

Question 2. Are Schur polynomials in the Chern classes pseudo-effective?

Reminder: Fixing a partition $\lambda := (\lambda_1 > ... > \lambda_r)$, then the Schur polynomial is the determinant of the matrix

$$
\begin{vmatrix}
 c_{\lambda_1} & c_{\lambda_1 + 1} & \cdots \\
 c_{\lambda_1 - 1} & c_{\lambda_2} & \cdots \\
 \vdots & \vdots & \ddots
\end{vmatrix}
$$

Question 3. Do Schur polynomials of nef vector bundles generate $\text{Nef}^k(X)$?

Question 4. Suppose P_1 and P_2 are Schur polynomials in nef vector bundles. Is $P_1 \cdot P_2$ nef? (Note: the product of two Schur polynomials is a positive sum of Schur polynomials, but we could take the polynomials in different vector bundles)

Example 1. Try to compute $\text{Eff}_k(X)$ on high degree very general hypersurfaces in $Gr(k, n)$ or $\mathbb{P}^r \times \mathbb{P}^m$?

Question 5. How many very general points must you blow-up in $Gr(k, n)$ before it ceases to be a Mori Dream Space? (the \mathbb{P}^n case is known) but the proof involves existence of a big "Cremona" action.

Question 6. For what classes of varieties can we guarantee equality of various "dual positive cones"? (E.g.s Nef, Upsef, BPF. and pliant)

Definitions: The universal pseudo-effective cone Upsef^k consists of classes $\beta \in N^k(X)$ such that for all $f : Y \to X$, $f^*(\beta) \cap [Y] \in \text{Eff}_*(Y)$. ($\text{Upsef} \implies \text{Nef}$)

The base point free cone consists of products of basepoint free classes.

The pliant cone consists of products of pullbacks of Schubert classes from Grassmannians (=products of Schur polynomials in globally generated vector bundles).

Question 7. For what kinds of varieties can one guarantee equality of various "dual positive" cones? (E.g. Nef \supset Upsef \supset BPF \supset pliant)

Question 8. Is $\text{Upsef}=\text{Nef} \cap \text{Eff}$? (true for spherical/toric/homogeneous varieties)
Question 9. Do duals of these cones have interesting geometric interpretations?

Question 10. If $\beta \in N^k(X)$ and for all inclusions $i : Y \hookrightarrow X$, $i^*\beta \cap [Y] \in \text{Eff}_i(Y)$, does this imply $\beta \in U_{pse} f^*$?

Example. Compute Eff_k on projective bundles in the following cases. (Fulger computed these for \mathbb{P}^r-bundles over curves. Everything falls out of the Harder-Narasimhan filtration)
1) Split bundles.
2) \mathbb{P}^2-bundles over \mathbb{P}^2 or a K3 surface.
 • Are there non-finitely generated cones?, • non-simplicial cones?, test the strong conjecture of Debarre-J-Voisin. (The weak conjecture is known in this case.)

The Strong and Weak Conjecture. Suppose $f : X \rightarrow Y$ is a morphism. Let’s look at contracted classes in $\text{Eff}_k(X)$:

$$\text{Eff}_k(X) := \{ \alpha \in \text{Eff} | f_*\alpha = 0 \}$$

$$= \{ \alpha \in \text{Eff} | f^*H^k \cdot \alpha = 0, H \text{ ample} \}.$$

• Strong Conjecture: Is Eff the closure of the cone generated by contracted effective classes?
• Weak Conjecture: Is Eff in the vector space spanned by effective contracted classes?

Example. Let X be a projective variety. If we blow-up X at enough very general points. Is it always true that each Eff is not finitely generated?

Example. $\text{Eff}(X)$ for $X = \text{Hilb}^n(S)$? $S = \mathbb{P}^2$?

Example. $\text{Eff}_2(X)$ for $X = M^{En}_0$?

Example. Eff for blowup \mathbb{P}^n over subvarieties of dimension ≥ 1?

Question 11. Does flat pullback of cycles descend to numerical equivalence?

Question 12. If X is irreducible and non-reduced, is $N_k(X_{\text{red}}) \rightarrow N_k(X)$ an isomorphism?

Question 13. For X singular, do k-th Chern classes span $N^k(X)$?

Question 14. How do numerical spaces behave in smooth families? Is the dimension constant for the very general member?

Example. Is $\text{Eff}_2(X)$ finitely generated for a 2-Fano variety X? (Defn of 2-Fano: X Fano, and $c_{h^2}(\Omega_X)$ nef?)

Question 15. Can we relate positivity of the Chern classes of Ω_X, T_X to the geometry of X?

Question 16. Are there characterizations of positive cones of vector bundles in terms of metrics? Or positive cones of subvarieties in terms of currents?

Example. Is the diagonal on $S \times S$ rigid where S is a smooth surface of general type, $q(S) = 0$ and $g(S) \geq 0$? (Z rigid if it the unique effective \mathbb{R}-cycle in its numerical class) What about S a K3? (it is known for very general K3 surfaces by work in progress by Ottem and Lehman) Or positivity of
Question 17. Given a rational contraction $f : X \to Y$ with $\dim(Y) < \dim(X)$, such that 2 distinct irreducible divisors D_1 and D_2 satisfy $f(D_1) = f(D_2) \neq Y$, then D_1 and D_2 are extremal. [Dave Jensen’s genus 5 and genus 6 paper] Is there an analogue in higher codimension?

Question 18. Given a curve $C \subset X$ is a curve with ample normal bundle, does some multiple of C deform? (i.e. an algebraic family of irreducible curves with each fiber equivalent to $m[C]$, it is known that $[C]$ is big [Ottem]. It is false if C is a surface [Fulton-Lazarsfeld].)

Question 19. What is the cone of ample subvarieties (in Ottem’s sense—see Ottem’s thesis)?

Question 20. If $V, W \subset X$ have complementary codimension and ample normal bundles, is $V \cap W \neq \emptyset$?

Question 21. Is there an analogue of Kawamata-Morrison cone conjecture for abelian 4-folds?

Question 22. Can we compute Eff_2 of $S \times S$ or Hilb^2S for S any K3 surface? (Note: the Hodge conjecture is not necessarily known in this case.) What about $\text{Sym}^2 C$?

Definition: Given $\alpha \in N_k(X)_Z$, the mobility count

$$mc(\alpha) := \max \text{number of general points we can impose on an effective cycle of class } \alpha.$$

This is an analogue of $\dim H^0(X, L)$. The expected growth rate: $mc(m\alpha) \approx Cm^{n/(n-k)}$.

Goal: Understand behavior of $mc(m\alpha)$ as $m \to \mathbb{Z}$.

The mobility is

$$\text{mob}(\alpha) := \frac{mc(m\alpha)}{m^{n/(n-k)} / n!}.$$

The Iitaka dimension

$$K(\alpha) = \max \{ r \in \mathbb{R} | \limsup_{m \to \infty} \frac{mc(m\alpha)}{m^r} \}.$$

Question 23. (Hard) Compute $\text{mob}(\alpha)$ for $\alpha =$ line class on \mathbb{P}^3? (slogan: “complete intersections are optimal”)

Question 24. What is $K(\alpha)$ for α a Schubert class on $Gr(k, n)$?

Question 25. Develop better estimates for the growth rate of $mc(m\alpha)$ for α on $Gr(2, 4)$ or $\mathbb{P}^2 \times \mathbb{P}^2$.

Question 26. Is $K(\alpha) \in \mathbb{Z}$? (Yes for divisors, curves, $Gr(2, n)$, probably $\mathbb{P}^r \times \mathbb{P}^k$, etc...) What is the geometric meaning?
Question 27. (Voisin) Suppose α is represented by a family of cycles whose tangent spaces at a general point attain "all possible directions". Is $\alpha \in \text{Eff}_k$?

Question 28. Is there an Okounkov body construction for curves?... in threefolds? (the volume of a curve is defined to be

$$\text{vol}(C) := \inf_{A \text{ ample}} \left(\frac{A \cdot C}{\text{vol}(A)^{1/n}} \right)^{n/(n-1)}$$

this is a "polar transform" of the standard volume function for divisors.

Question 29. For a toric variety, find a convex body interpretation of the volume for curves (or Zariski decomposition)? ... or for vector bundles?