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Abstract: We prove that if X ⊂ Pr is any 2-regular scheme (in the sense of

Castelnuovo-Mumford) then X is small . This means that if L is a linear space

and Y := L ∩ X is finite, then Y is linearly independent in the sense that

the dimension of the linear span of Y is 1 + deg Y . The converse is true and

well-known for finite schemes, but false in general. The main result of this paper

is that the converse, “small implies 2-regular”, is also true for reduced schemes

(algebraic sets). This is proven by means of a delicate geometric analysis, leading

to a complete classification: we show that the components of a small algebraic

set are varieties of minimal degree, meeting in a particularly simple way. From

the classification one can show that if X ⊂ Pr is 2-regular, then so is Xred, and

so also is the projection of X from any point of X.

Our results extend the Del Pezzo-Bertini classification of varieties of minimal

degree, the characterization of these as the varieties of regularity 2 by Eisenbud-

Goto, and the construction of 2-regular square-free monomial ideals by Fröberg.

Throughout this paper we will work with projective schemes X ⊂ Pr over an
algebraically closed field k. The (Castelnuovo-Mumford) regularity of X ⊂ Pr is
a basic homological measure of the complexity of X and its embedding in Pr that
gives a bound for the degrees of the generators of the defining ideal IX of X and for
many other invariants. The only schemes of regularity 1 are the linear spaces; but
no classification is known for projective schemes of regularity 2.

In this paper we prove a structure theorem for reduced 2-regular schemes, show-
ing that their irreducible components are varieties of minimal degree and charac-
terizing how these components can meet. We also show that the reduced structure
on any 2-regular scheme is 2-regular, and thus we obtain a complete description of
the reduced structures on 2-regular schemes. (Since a high Veronese re-embedding
of any zero-dimensional scheme is 2-regular, one cannot hope to characterize the
isomorphism types of all 2-regular non-reduced schemes.)

Before stating our results we review some basic notions. For any subscheme
X ⊂ Pr we write span(X) for the smallest linear subspace of Pr containing X. Recall
that every variety (≡ reduced irreducible scheme) X ⊂ Pr satisfies the condition

(∗) deg(X) ≥ 1 + codim(X, span(X))

The authors are grateful to BIRS, IPAM, MSRI, the DFG and the NSF for
hospitality and support during the preparation of this work.
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(see for instance Mumford [1976, Corollary 5.13]). We say that the variety X ⊂ Pr

has minimal degree (more precisely, minimal degree in its span) if equality holds.
Surfaces of minimal degree were classified by Del Pezzo [1886], and the classification
was extended to all dimensions by Bertini [1907] (see Eisenbud-Harris [1987] for a
modern account):

Theorem 0.1 A projective variety of minimal degree in its span is either a linear

space, a quadric hypersurface in a linear space, a rational normal scroll, or a cone

over the Veronese surface in P5.

This classification was extended to equidimensional algebraic sets that are con-
nected in codimension 1 – the ones for which “minimal degree” is a good notion –
by Xambó [1981]. For more general algebraic sets it is not clear that there should
exist any interesting generalization of the equality in (∗) above. Nevertheless, the
notion of smallness is just such a generalization.

Varieties of minimal degree were characterized cohomologically by Eisenbud-
Goto [1984], and their result offers a way to generalize the hypothesis of the Del
Pezzo-Bertini Theorem to all projective schemes. To state their result recall that
X ⊂ Pr is said to have regularity d, or to be d-regular, in the sense of Castelnuovo-
Mumford, if the ideal sheaf IX satisfies Hi(IX(d − i)) = 0 for all i > 0, or equiv-
alently, if the j-th syzygies of the homogeneous ideal IX are generated in degrees
≤ d + j for all j ≥ 0 (see Eisenbud-Goto [1984], or Eisenbud [2004] for a proof of
the equivalence).

Theorem 0.2 A variety X ⊂ Pr has minimal degree in its linear span if and only

if X is 2-regular.

An old argument of Lazarsfeld (see for instance [2004]), recently refined by
Sidman [2002], Caviglia [2003], Eisenbud-Green-Hulek-Popescu [2004] and others,
shows that if X ⊂ Pr is d-regular and Λ is a linear subspace such that X ∩ Λ
has dimension 0, then X ∩ Λ is also d-regular. When d = 2 we can rephrase this
geometrically:

We say that a finite scheme Y ⊂ Pr is linearly independent if the dimension of
the linear span of Y is 1 + deg Y . We say that a scheme X ⊂ Pr is small if, for
every linear subspace Λ ⊂ Pr such that Y = Λ∩X is finite, the scheme Y is linearly
independent. (An alternative definition of smallness by a more general property of
intersections is given in Theorem 2.2.) Lazarsfeld’s argument gives:

Proposition 0.3 Any 2-regular scheme X ⊂ Pr is small.

Our main results are that the converse holds in the reduced case, and that small
reduced schemes have a simple inductive classification. To state the classification,
we say that a sequence of closed subschemes X1, . . . , Xn ⊂ Pr is linearly joined if,
for all i = 1, . . . , n− 1, we have

(X1 ∪ . . . ∪Xi) ∩Xi+1 = span(X1 ∪ . . . ∪Xi) ∩ span(Xi+1).

2



Theorem 0.4 Let X ⊂ Pr be an algebraic set. The following conditions are

equivalent:

(a) X is small.

(b) X is 2-regular.

(c) X = X1 ∪ . . . ∪Xn, where X1, . . . , Xn is a linearly joined sequence of varieties

of minimal degree.

The implication (c) ⇒ (b) is easy (see Proposition 3.1) while (b) ⇒ (a) is a
special case of Proposition 0.3 (see also Section 1 for details). Most of this paper
is occupied with the proof of the implication (a) ⇒ (c), which requires a delicate
geometric analysis of the notion of smallness in the style of classical projective
geometry. One of the things that makes the argument subtle is the fact that the
linearly joined property of a sequence of varieties is strongly dependent on the
ordering, as the following example shows.

Example 0.5 Let L0 be a line in P4, and let L1, L2, L3 be 3 general lines that
meet L0. The union X =

⋃3
i=0 Li is 2-regular; in fact it is connected in codimension

1, has minimal degree, and is a degeneration of a rational normal quartic curve.
As required by Theorem 0.4, X can be written as the union of a linearly joined
sequence of varieties L0, L1, L2, L3, which are trivially of minimal degree in their
spans.

On the other hand, the reverse sequence L3, L2, L1, L0 is not linearly joined.
Indeed, the subset Y = L3 ∪ L2 ∪ L1 is not 2-regular: since Y meets the line L0 in
three points, the ideal of Y requires a cubic generator. It is easy to check that there
is no enumeration of the components of X as a linearly joined sequence for which
the reverse sequence is linearly joined.

In the special case where X is a union of coordinate subspaces, the equivalence
of parts (b) and (c) of Theorem 0.4 had been proved by Fröberg [1985, 1988] as
an application of Stanley-Reisner theory. Unions of coordinate spaces correspond
to simplicial complexes. Using earlier results of Dirac [1961] and Fulkerson-Gross
[1965], Fröberg showed that a simplicial complex corresponds to a 2-regular set if
and only if it is the clique complex of a chordal graph. (We reprove this and give
a generalization in Eisenbud-Green-Hulek-Popescu [2004]. See also Herzog, Hibi,
and Zheng [2003] for a related path to Dirac’s theorem.) The orderings described
in part (c) of Theorem 0.4 are called perfect elimination orderings in this context.
See Blair-Peyton [1993] for a survey.

Properties that are easy to check for algebraic sets satisfying one of the condi-
tions of Theorem 0.4 may be quite obscure for sets satisfying another. Theorem 0.4
has a number of surprising algebraic and geometric consequences based on this ob-
servation:

Corollary 0.6 If X ⊂ Pr is a 2-regular algebraic set, then the union of any two

irreducible components of X is again 2-regular.
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By Example 0.5 the same cannot be said of a union of three components.

Proof. By Theorem 0.4, the irreducible components of X are of minimal degree
in their spans. and thus also 2-regular by Theorem 0.2. From Proposition 3.1 we
see that any 2 components are again linearly joined. The result follows by applying
Theorem 0.4 once again.

Corollary 0.7 Let X ⊂ Pr be a 2-regular algebraic set. If p ∈ X is a point and

πp denotes the linear projection from p, then πp(X) ⊂ Pr−1 is 2-regular.

By Theorem 0.4 a similar statement holds with “small” in place of “2-regular”.

Proof. If X1, . . . , Xn is a linearly joined sequence of varieties of minimal degree,
then πp(X1), . . . , πp(Xn) is a linearly joined sequence of varieties of minimal degree.
Theorem 0.4 completes the proof.

Corollary 0.8 If X ⊂ Pr is 2-regular, then Xred ⊂ Pr is also 2-regular.

Proof. By Eisenbud-Green-Hulek-Popescu [2004, Theorem 1.6] (see also Theo-
rem 1.2) the scheme X ⊂ Pr is small. It follows that Xred is also small (Proposi-
tion 2.1). By Theorem 0.4, Xred is 2-regular.

Corollary 0.9 Let X1, . . . , Xn ⊂ Pr be a collection of varieties of minimal degree

in their spans. The union
⋃

i Xi is small if and only if each pair Xi, Xj is linearly

joined and the union of the linear spans
⋃

i span(Xi) is small.

Of course a similar statement will hold for 2-regularity in place of smallness.
That version is actually one of the key ingredients in the proof of Theorem 0.4.

Proof. Use Theorem 0.4 and Proposition 3.4

The plan of the paper is as follows. In Sections 1, 2 and 3 we establish basic
properties of 2-regular sets, small projective schemes, and linearly joined sequences
of projective schemes. Of particular interest is the Bézout type result, Theorem 2.2:
If X ⊂ Pr is a small subscheme and Λ ⊂ Pr is any linear space, then the sum of the
degrees of the irreducible components (reduced or not, but not embedded) of X ∩Λ
is bounded by codim(X ∩ Λ,Λ) + 1. The results in these sections are necessary for
the proof of Theorem 0.4, which is carried out in Section 4.

The argument of Lazarsfeld showing that plane sections of X ∩L of a 2-regular
scheme X are small works even if X is not 2-regular, but only has an ideal generated
by quadrics having only linear syzygies for at least dimL steps. With slightly
stronger hypotheses one can prove a little more; for example that that the syzygies
of X ∩ L come from syzygies of X by restriction. See Theorem 1.2, and Eisenbud-
Green-Hulek-Popescu [2004].

It follows from Corollary 0.9 that the condition that an algebraic set X ⊂ Pr be
small (or 2-regular) has a “local” part, that the Xi of X should be of minimal degree
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in their spans, and pairwise linearly joined; and a “global”, or combinatorial part,
that the subspace arrangement

⋃
i span(Xi) be small. In Section 5 we will study

small subspace arrangements. In particular, we describe the orderings of subspaces
that make them into a linearly joined sequence in terms of certain spanning forests
of the intersection graph of Y .

Finally, in Section 6 we discuss how to find generators for the ideal of a re-
duced 2-regular projective scheme. In particular, we prove that any 2-regular union
of linear spaces has ideal generated by products of linear forms. The proof of Theo-
rem 6.1 also provides a free resolution for the ideal of a 2-regular algebraic set, and
one can ensure that the first two terms of the resolution are minimal, obtaining a
formula for the number of generators of the ideal. Some results along this line have
also been obtained by Barile and Morales [2000, 2003].

We thank Aldo Conca, Harm Derksen, Mark Haiman, Jürgen Herzog, Bill
Oxbury, Kristian Ranestad, Jerzy Weyman, and Sergey Yuzvinsky for useful discus-
sions. Behind the scenes, the program Macaulay2 of Dan Grayson and Mike Stillman
has been extremely useful to us in trying to understand the relations between the
linear syzygies and geometry.

1 2-regular schemes

The regularity of the ideal sheaf of a closed subscheme X ⊂ Pr is ≤ 1 if and
only if X is defined by linear forms, so X is a linear subspace in this case.

By contrast, any finite scheme can be embedded as a 2-regular scheme. In
fact, we see from the definition of regularity that a high Veronese re-embedding of
any given embedding of a zero-dimensional scheme is 2-regular. In fact a complete
characterization of 2-regular embeddings of zero-dimensional schemes is well-known:

Proposition 1.1 A zero-dimensional nondegenerate scheme X ⊂ Pr is 2-regular

if and only if deg X = 1 + dim span(X).

Proof. The cohomological condition for regularity is equivalent to saying that X

imposes deg X independent conditions on linear forms, that is, the span of X has
dimension deg X − 1.

We will often use the fact that a zero-dimensional plane section of a 2-regular
scheme is again 2-regular. As described in the introduction, this follows from an
argument of Lazarsfeld, and many others have studied it recently. Here is a version
sufficient for our purposes in this paper. We say that an ideal I ⊂ S has 2-linear
resolution for at least p steps if the i-th syzygies of I are generated in degrees ≤ i+1
for i = 0, . . . , p− 1. For example, if I contains no linear forms, this means that the
minimal free resolution of I has the form

· · · ⊕ S(−i)βp,i - S(−p− 1)βp−1 - · · · - ⊕ S(−2)β0 - I - 0.
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We also say in this case that I satisfies property N2,p; this is the terminology used
in Eisenbud-Green-Hulek-Popescu [2004].

Theorem 1.2 Let S be the polynomial ring on r + 1 variables, and suppose that

X ⊂ Pr has homogeneous ideal IX ⊂ S such that IX is generated by quadrics

and has linear resolution for at least p steps. If Λ ⊂ Pr is a linear subspace with

codim(Λ ∩ X, span(Λ ∩ X)) ≤ p − 1, then Λ ∩ X is 2-regular. In particular, any

zero-dimensional plane section of a 2-regular scheme is 2-regular.

For an explicit proof see for example Eisenbud-Green-Hulek-Popescu [2004,
Th 1.1]. Combining Proposition 1.1 and Theorem 1.2 we get as a corollary the
Proposition 0.3 in the introduction:

Corollary 1.3 Any 2-regular closed scheme X ⊂ Pr is small.

There is a geometric characterization of reduced 2-regular schemes of higher
dimension in the Cohen-Macaulay case. By a result of Hartshorne [1962] (see Eisen-
bud [1995]), connectedness in codimension 1 is a necessary condition for Cohen-
Macaulayness. It turns out that for reduced 2-regular algebraic sets they are equiv-
alent.

Theorem 1.4 Let X ⊂ Pr be an equidimensional projective scheme, and let L be

the linear span of X. Suppose that X is reduced,and connected in codimension 1.

(a) deg X ≥ codim(X, L) + 1.

(b) X is 2-regular if and only if deg X = codim(X,L) + 1.

(c) If the equivalent conditions in part (b) hold, then the homogeneous coordinate

ring of X is Cohen-Macaulay.

Proof. Part (a) of Theorem 1.4 is elementary: the proof works as in the irreducible
case (see Hartshorne [1962]) using the connectedness hypothesis to guarantee that
the plane section is nondegenerate. The rest is proven in Eisenbud-Goto [1984].

The following Corollary is Theorem 0.4 in the special case of irreducible or
connected-in-codimension 1 algebraic sets:

Corollary 1.5 Let X ⊂ Pr be a projective scheme, and let L be the linear span

of X. Suppose that X is reduced, and connected in codimension 1. If X is small

then X is 2-regular.

A well-known regularity criterion that is essentially due to Mumford [1966,
Lecture 14] will play a central role. (See also the last section of Eisenbud [2004] for
details.)

Theorem 1.6 A closed subscheme X ⊂ Pr is 2-regular if and only if

(a) For some (respectively, any) hyperplane H ⊂ Pr, defined by a linear form that

is locally a nonzerodivisor on OX , the scheme X ∩H is 2-regular, and

(b) X is linearly normal; equivalently, the restriction map

H0(OPr (1)) - H0(OX(1)) is surjective.
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We will say that a scheme X ⊂ Pr is the direct sum of schemes Zi ⊂ Pr if, for
each i,

span(Zi) ∩ span(
⋃

j 6=i

Zj) = ∅.

In other words the underlying vector space of the span of X is the direct sum of the
underlying vector spaces of the spans of the Zi. If this holds, then most questions
about X ⊂ Pr can be reduced to questions about the Zi ⊂ span(Zi); for instance
the next result will allow us to reduce questions about 2-regularity to the connected
case.

Proposition 1.7 X ⊂ Pr is 2-regular if and only if the connected components of

X are 2-regular and X is the direct sum of its connected components.

Proof. The vanishing Hi(IX(2 − i)) ∼= Hi−1(OX(2 − i)) = 0, for all i ≥ 2, is
equivalent to Hi−1(OZ(2 − i)) = 0, for all i ≥ 2, and all connected components
Z of X. On the other hand we may assume that X is nondegenerate. Then if
X = Z1 ∪ Z2 is a disjoint union, the cohomology of the short exact sequence

0 - IX(1) - IZ1(1)⊕ IZ2(1) - OPr (1) - 0

yields that H1(IX(1)) = 0 if and only if both H1(IZi(1)) = 0, for i = 1, 2, and
H0(IZ1(1))⊕H0(IZ2(1)) - H0(OPr (1)) is an isomorphism.

2 Basic properties of small algebraic sets

The following remarks will be used frequently in the sequel. They follow at
once from the definitions.

Proposition 2.1 Let X ⊂ Pr be a small subscheme.

(a) Any plane section of X is small.

(b) Xred is small.

We could have defined smallness by a more general property of intersections.
Recall that the geometric degree of a closed subscheme Y ⊂ Pr is defined as the sum
of the degrees of the isolated irreducible (not necessarily reduced) components of Y .

Theorem 2.2 If X ⊂ Pr is a small scheme, and L ⊂ Pr is a linear space, then the

geometric degree of X ∩ L is at most 1 + codim(X ∩ L,L).

Does Theorem 2.2 hold with the arithmetic degree (sum of all the degrees of
isolated and embedded components) in place of the geometric degree? See Bayer-
Mumford [1993], Sturmfels-Trung-Vogel [1995], or Miyazaki-Vogel-Yanagawa [1997]
for the definition and basic properties of such degrees.
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Proof. By Proposition 2.1 we can assume L = Pr. We do induction on r, the case
r = 0 being obvious. Let Y be the union of the zero-dimensional components of X,
so that X = Y ∪Z is the disjoint union of Y and a scheme Z whose components have
positive dimension. If Y spans Pr, then successively factoring out elements of the
socle of OY , we see that Y contains a subscheme Y ′ of length r spanning an (r−1)-
plane Λ ⊂ Pr. If Z is non-empty then this plane meets Z nontrivially, and thus the
sum of the degrees of the components of X∩Λ is > r = dim Λ+1 ≥ codim(Λ∩X, Λ).
Since X∩Λ is small, this contradicts the inductive hypothesis and shows that Z = ∅.
Therefore X = Y is finite, and the desired conclusion follows from the definition of
smallness.

On the other hand, suppose that Y does not span Pr. If Λ is a general hyper-
plane containing Y , then Λ meets all the irreducible components Zi of Z in schemes
Zi ∩X of the same degree as Zi. Further, the intersection Zi ∩ Zj of distinct com-
ponents has dimension strictly less than that of Zi or Zj , so the schemes Zi∩Zj ∩Λ
do not contain any component of Z ∩ Λ. It follows that the sum of the degrees of
the components of Z ∩Λ is equal to the corresponding sum for Z. By induction on
r, the degree of Y ⊂ Λ plus the sum of the degrees of the components of Z ∩ Λ is
bounded by 1 + codim(X ∩ Λ,Λ) = 1 + codim(X,Pr). Thus the same bound holds
for X.

We isolate a consequence of Theorem 2.2 for use in the proof of the Theo-
rem 0.4:

Corollary 2.3 Suppose that Y, Z ⊂ Ps are disjoint algebraic sets. If Y ∪Z is small

then both Y and Z are small.

Proof. By symmetry it suffices to show that Y is small. Suppose that L is a linear
space that meets Y in a finite scheme. Since L ∩ (Y ∪ Z) is the disjoint union of
L ∩ Y and L ∩ Z, the geometric degree of L ∩ (Y ∪ Z) is at least as great as the
length of L ∩ Y , so we are done by Theorem 2.2.

The conclusion of Theorem 2.2 may be interpreted as a Bézout type theorem in
the case of small varieties. A special case of a result of Lazarsfeld says that if X ⊂ Pr

is a nondegenerate subvariety and Λ ⊂ Pr is a linear subspace, then the geometric
degree of X ∩Λ is bounded above by deg(X)− codim(X,Pr)+codim(X ∩Λ, Λ) (see
Fulton [1984], Example 12.3.5, which also states Lazarsfeld’s more general result, or
Fulton-Lazarsfeld [1982]). In the case when X is a variety of minimal degree this
yields Theorem 2.2.

Next we analyze the irreducible components, and the relative positions of pairs
of irreducible components, of small sets. By Proposition 2.1 the same results would
apply to the reduced irreducible components of any small projective scheme.

Proposition 2.4 Let X ⊂ Pr be a small algebraic set.

(a) Any irreducible component Xi of X is a variety of minimal degree in its linear

span; that is deg Xi = dim span(Xi)− dim Xi + 1.
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(b) Any two irreducible components Xi and Xj of X are linearly joined; that is,

Xi ∩Xj = span(Xi) ∩ span(Xj).

Proof. Write X =
⋃

i Xi, where Xi are the irreducible components of X, and let
Li = span(Xi) denote the linear span of Xi. Any variety Xi in projective space
satisfies deg Xi ≥ dim span(Xi)− dim Xi + 1, but in our case, Xi is a component of
Li∩X, so the opposite inequality and thus part (a) follows by applying Theorem 2.2
to the linear space Li.

For part (b), we first apply Theorem 2.2 to the linear space L = span(Li ∪Lj).
By construction Xi and Xj are components of L ∩ X, so the geometric degree of
L ∩X is at least deg Xi + deg Xj , and so Theorem 2.2 yields

deg Xi + deg Xj ≤ dim Li + dim Lj − dim(Li ∩ Lj)−max(dim Xi, dim Xj) + 1.

On the other hand, by part (a), deg Xi = dim Li − dim Xi + 1 and we deduce
dim(Li ∩ Lj) ≤ min(dimXi, dim Xj)− 1.

Now suppose that Xi ∩ Xj 6= Li ∩ Lj . If dim Li ∩ Lj > 0, then to simplify
we may cut all the schemes concerned by a general hyperplane H. Because Xi is
reduced, irreducible and of dimension > 1, the hyperplane section H ∩Xi is again
reduced and irreducible (by Bertini’s Theorem) and spans Li ∩H. The same holds
for Xj . Continuing to take hyperplane sections, we may reduce to the case where
the linear space Li ∩ Lj is just a point p.

If now both Xi and Xj contain p, then Xi ∩ Xj = {p} = Li ∩ Lj as desired.
If however Xi does not contain p but Xj does, then Li ∩X contains a component
through p and thus

deg(X ∩ Li) > deg Xi ≥ dim Li − dim Xi + 1 ≥ dim Li − dim(X ∩ Li) + 1,

contradicting Theorem 2.2. By symmetry, we may therefore assume that neither
Xi nor Xj meets Li ∩ Lj = {p}, and we must derive a contradiction.

Let Λk ⊂ Lk, for k = i, j, be general planes containing p and having dim Λk =
codim(Xk, Lk). The scheme Λk ∩ Xk is zero-dimensional. Set Λ = span(Λi ∪ Λj).
We have Λ∩Li = Λi + (Λj ∩Li) = Λi, and similarly for Λ∩Lj , so the components
of Λk ∩Xk, k = i, j, are also components of Λ ∩X. Thus the geometric degree of
Λ ∩X is at least deg Xi + deg Xj .

On the other hand, since Λi and Λj meet in a point, the dimension of Λ is
dimΛi + dim Λj = codim(Xi, Li) + codim(Xj , Lj) = deg Xi + deg Xj − 2, by part
(a). But then Theorem 2.2 yields that the geometric degree of Λ ∩ X is at most
dimΛ+1 = deg Xi +deg Xj−1, the desired contradiction. This concludes the proof
of (b).
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3 Linearly joined sequences of schemes

A first connection of the notions of smallness and 2-regularity with the notion of
linearly joined sequence is provided by the following observations. A linearly joined
sequence of schemes X, Y ⊂ Pr is linearly joined in either order, so we simply say
that the pair is linearly joined.

Proposition 3.1 Suppose X1, X2 ⊂ Pr are linearly joined, and set X = X1 ∪X2.

(a) X is small ⇒ X1 and X2 are both small.

(b) X is 2-regular ⇔ X1 and X2 are both 2-regular.

Proof. Part (a) is easy. To prove part (b), write L for the linear space X1∩X2. The
result follows from the exact sequence

0 - IX
- IX1 ⊕ IX2

- IL
- 0.

(or see the more general statement in part (c) of Theorem 6.1).

Remark 3.2 In the reduced case the converse to part (a) follows from part (b)
and Theorem 0.4.

As with 2-regularity, we can reduce questions about linearly joined sequences
to the connected case.

Proposition 3.3 If X ⊂ Pr is the union of a linearly joined sequence of irreducible

schemes, then X is the direct sum of its connected components.

Proof. Let X1, . . . , Xn be the linearly joined sequence of irreducible components of
X. We do induction on n, the case n = 1 being trivial.

By induction we may assume that X ′ =
⋃n−1

i=1 Xi is the direct sum of its
connected components Z ′1, . . . , Z

′
s. Since Xn ∩ X ′ = span(Xn) ∩ span(X ′) is a

linear space, Xn can meet at most one of the Z ′i. If Xn does not meet any Z ′i, and
thus forms a new connected component, then span(Xn) is disjoint from span(X ′),
as required. Thus we may assume that Xn meets a unique component, which we
may as well call Z ′s, and the connected components of X are

Z1 = Z ′1, . . . , Zs−1 = Z ′s−1, and Zs = Z ′s ∪Xn.

If X were not the direct sum of the Zi, then there would be a nontrivial depen-
dence relation of the form

∑s−1
1 pi+(ps+q) = 0 where each pi is a vector of homoge-

neous coordinates of a point in span(Z ′i), or the 0 vector, and q is a vector of homoge-
neous coordinates of a point in span(Xn). q is not the 0 vector since Z ′1, . . . , Z

′
s are di-

rect summands, so q must represent a point in span(X ′)∩span(Xn) = X ′∩Xn ⊂ Z ′s.
Since X ′ is a direct sum of the Z ′i, it follows that p1 = · · · = ps−1 = ps + q = 0, as
required.
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Next we show that condition (b) of Proposition 2.4 is exactly the difference
between saying that the sequence of schemes X1, . . . , Xn is linearly joined and saying
that the (same) sequence of their spans is linearly joined.

Proposition 3.4 Let X1, . . . , Xn ⊂ Pr be a sequence of closed subschemes and,

for each i, let Li denote the linear span of Xi. The sequence X1, . . . , Xn is linearly

joined if and only if the sequence L1, . . . , Ln is linearly joined and each pair Xi, Xj

is linearly joined, for all i 6= j.

Proof. First suppose that the sequence X1, . . . , Xn is linearly joined. It follows
at once that L1, . . . , Ln is linearly joined. By induction on n we may suppose
that all pairs Xi, Xj are linearly joined for i, j < n, and it suffices to show that
Lj ∩Ln ⊂ Xj ∩Xn for each j < n. Since the sequence X1, . . . , Xn is linearly joined
we have ⋃

j<n

(Xj ∩Xn) = (
⋃

j<n

Xj) ∩Xn = span(
⋃

j<n

Xj) ∩ Ln.

Since this is a linear space it must be contained in one of the Xi∩Xn for some i < n.
In particular, Lj ∩Ln ⊂ Xi ∩Xn, for all j < n, and thus we see that Lj ∩Ln ⊂ Xn.
Since, by induction, the pairs Xi, Xj are linearly joined we also have

Lj ∩ Ln = Lj ∩ Ln ∩Xi ∩Xn ⊂ Lj ∩Xi ⊂ Xj ,

completing the argument.
Conversely, suppose that the Xi are pairwise linearly joined and L1, . . . , Ln

is a linearly joined sequence. By induction, we may assume that X1, . . . , Xn−1 is
linearly joined sequence. But

span(
⋃

i<n

Xi) ∩ Ln = span(
⋃

i<n

Li) ∩ Ln = (
⋃

i<n

Li) ∩ Ln = Lj ∩ Ln

for some j < n. Since the pair Xj , Xn is linearly joined we also have Lj ∩ Ln =
Xj ∩Xn, so span(

⋃
i<n Xi) ∩ Ln = (

⋃
i<n Xi) ∩Xn as required.

4 Proof of Theorem 0.4

We already have the tools to dispose of two implications in Theorem 0.4 easily.
Theorem 0.2, together with Proposition 3.1 gives the implication (c) ⇒ (b). On the
other hand, Theorem 1.2 (proved in Eisenbud-Green-Hulek-Popescu [2004]) includes
the implication (b) ⇒ (a) as a special case.

The last implication, (a) ⇒ (c), will occupy us for the rest of this section. Here
is an outline: We first prove (a) ⇒ (c) in the case where each Xi is a linear space,
then we use this case to prove the implication (b) ⇒ (c) in general. Finally we will
use the implication (b) ⇒ (c) to prove (a) ⇒ (c).
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Proof of (a) ⇒ (c) for unions of planes:

To finish the proof of Theorem 0.4 in the case where X is a union of planes,
we will project from a general point on a carefully chosen component of X, using
the following results.

Proposition 4.1 Let Vi ⊂ V , i = 1, . . . , m, be distinct linear subspaces, not

contained in one another, such that any m− 1 of them span the ambient space V .

Then there exist vectors ui ∈ Vi \
⋃

j 6=i Vj such that the collection u1, . . . , um is

linearly dependent.

Proof. Since the subspaces Vi are distinct and not contained in one another Zi =
(∪j 6=iVj) ∩ Vi is a union of finitely many proper linear subspaces of Vi, for all i =
1, . . . , m. In particular Zi 6= Vi. Let W denote the kernel of the natural summation
map

ϕ : V1 ⊕ V2 ⊕ · · · ⊕ Vm

(v1,...,vm)7→
∑m

i=1
vi- V.

Observe that if πi : V1 ⊕ V2 ⊕ · · · ⊕ Vm → Vi denotes the projection on the i-th
factor, then πi(W ) = Vi by our hypothesis. It follows that π−1

i (Zi) 6= W for all i.
Since the ground field is infinite, there exists a vector w = (v1, . . . , vm) ∈ W such
that πi(w) 6∈ Zi for all i = 1, . . . ,m. In other words, vi ∈ Vi \ (∪j 6=iVj), i = 1, . . . , m

and v1 + · · ·+ vm = 0.

Proposition 4.2 Let X =
⋃t

i=1 Xi ⊂ Pr be a small union of closed subschemes. If

Λi ⊂ Xi is a linear subspace for each i such that Λi does not meet any Xj for j 6= i,

then the Λi are linearly independent and their linear span meets each Xj precisely

in Λj .

Proof. Let Λ be the span of the Λi. If the Λi were dependent, then there would be
a set of points pi ∈ Λi that were dependent. Similarly if Λ ∩ Xj 6= Λj then there
would be a set of points pi ∈ Λi, such that the span of the pi met Xj outside Λj .
Consequently, to prove either statement, we may assume that Λi = {pi}.

Since pi /∈ Xj for j 6= i, there is a component X ′
i of Λ ∩ X containing pi but

none of the pj . By Theorem 2.2, the sum of the degrees of the X ′
i is at most

codim(X ∩ Λ, Λ) + 1 ≤ dim(Λ) + 1. Since Λ is spanned by the points pi ∈ X ′
i,

the dimension of Λ is at most one less than the number of components X ′
i. By

Theorem 2.2 we conclude that each X ′
i = {pi}, the pi are linearly independent, and

there are no other points in X ∩ Λ.

Corollary 4.3 If X =
⋃

i Xi ⊂ Pr is a small union of linear subspaces, then there

exists an i such that Xi is not in the linear span of the
⋃

j 6=i Xj .

Proof. If each component Xi were contained in the span of the others, then passing
to affine cones we would have a system of subspaces satisfying the hypothesis of
Proposition 4.1. The set of points corresponding to the vectors in the conclusion of
Proposition 4.1 would violate Proposition 4.2.
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Proposition 4.4 Let X =
⋃n

i=1 Xi ⊂ Pr be a small union of linear subspaces. If

p ∈ X1 is a point that is not on the span of
⋃n

i=2 Xi, then the image of X under

linear projection from p, πp : Pr ........- Pr−1, is small.

Proof. By hypothesis there is a hyperplane H ⊂ Pr that contains
⋃n

i=2 Xi but does
not contain p. By Proposition 2.1 the union of linear spaces X ′ = (H∩X)red is small,
and the projection πp induces a linear isomorphism X ′ ⊂ H - πp(X) ⊂ Pr−1,
proving that πp(X) ⊂ Pr−1 is also small.

Proposition 4.5 Let X =
⋃n

i=1 Xi ⊂ Pr be a small union of linear spaces, and let

p ∈ X1 be a point not in the linear span of the union of X2, . . . , Xn. If, for some i,

the schemes πp(Xi) and πp(
⋃

j 6=i Xj) are linearly joined, then Xi and
⋃

j 6=i Xj are

linearly joined.

Proof. Let Z =
⋃

j 6=i Xi. We must show that if q ∈ Xi ∩ span(Z) then q ∈ Z. Note
that p cannot be in both Xi and span(Z), so p 6= q, and the projection πp(q) is
defined.

First suppose i = 1. We have πp(q) ∈ πp(X1∩span(Z)) = πp(X1)∩πp(span(Z))
because p ∈ X1. Moreover, πp(span(Z)) = span(πp(Z)), and thus, because πp(X1)
and πp(Z) are linearly joined,

πp(q) ∈ πp(X1) ∩ span(πp(Z)) = πp(X1) ∩ πp(Z).

In particular, πp(q) ∈ πp(Z). As q ∈ span(Z), and πp is an isomorphism on span(Z),
we get q ∈ Z ∩X1 as required.

Next suppose i 6= 1. Because p ∈ span(Z), we may argue as before and obtain

πp(q) ∈ πp(Xi) ∩ πp(span(Z)) = πp(Xi) ∩ πp(Z).

Thus the line span(p, q) meets Z in a point q′ and meets Xi in a point q′′. If q = q′,
then q ∈ Z, and we are done. Thus we may as well assume that q 6= q′, which
implies that p ∈ span(q, q′). By hypothesis p /∈ span(

⋃
i 6=1 Xi), so at least one of

the points q, q′ must be in X1. Since p ∈ X1, this means that both q, q′ ∈ X1 ⊂ Z;
in particular q ∈ Z as required.

Conclusion of the Proof of (a) ⇒ (c) for a union of linear spaces. Again, let X =⋃n
i=1 Xi ⊂ Pr be a small union of linear spaces. We do induction on the dimension r

of the ambient projective space. After renumbering the components we may assume
by Corollary 4.3 that there exists a point p ∈ X1 that is not in the linear span of⋃

i≥2 Xi. By Proposition 4.4, the projection πp(X) ⊂ Pr−1 is also small.
By induction on the dimension of the ambient space, there is a permutation

of {1, . . . , n}, such that πp(Xσ(t+1)) is linearly joined to
⋃t

i=1 πp(Xσ(i)) for t =
1, . . . , n − 1. If 1 /∈ {σ(1), . . . , σ(t + 1)}, then πp is an isomorphism on the linear
span of

⋃t+1
i=1 Xσ(i), so Xt+1 is linearly joined to

⋃t
i=1 Xσ(i). If on the other hand

1 ∈ {σ(1), . . . , σ(t + 1)}, then Proposition 4.5 yields the same conclusion.
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Proof of (b) ⇒ (c) in the general case. If X is 2-regular, then by Proposition 2.4
all irreducible components Xi of X are varieties of minimal degree in their spans,
and they are pairwise linearly joined. To prove (c) it suffices, by Proposition 3.4, to
show that the union of the linear spans of the Xi can be arranged in a linearly joined
sequence. The next result shows that this union is 2-regular, and thus reduces the
proof to the case we have already treated. The proof will use an induction, and for
this we need to know that taking hyperplane sections commutes with taking spans
in certain cases.

Lemma 4.6 Let Y ⊂ Ps be a scheme, and H the hyperplane defined by a linear

form h. Suppose h is sufficiently general that it is locally a nonzerodivisor on OY .

If h0(OY ) = 1, then span(H ∩ Y ) = H ∩ span(Y ).

Proof. The diagram

0 - H0(OPs)
h- H0(OPs(1))

ρ- H0(OH(1)) - 0

0 - H0(OY )
?

h- H0(OY (1))
?

- H0(OY ∩H(1))
?

- · · ·

has exact rows, and the left-hand vertical map is surjective by the connectedness of
Y . By the snake lemma, the restriction ρ induces the isomorphism H0(IY (1)) ∼=
H0(IY ∩H,H(1)). It follows that span(H ∩ Y ) = H ∩ span(Y ).

Theorem 4.7 Let X =
⋃

i Xi ⊂ Pr be a closed subscheme with irreducible com-

ponents Xi that are Cohen-Macaulay and 2-regular. Let Li = span(Xi) and set

Y =
⋃

i Li. If Xi ∩Xj = Li ∩Lj for each i 6= j, then X is 2-regular if and only if Y

is 2-regular.

Proof. We will show that conditions (a) and (b) of Theorem 1.6 hold for X if and
only if they hold for Y .

(a): Suppose that X is 2-regular. By Proposition 1.7, X is the direct sum of its
connected components, which are also 2-regular. In particular, if X has any zero-
dimensional components, they form a direct summand and we may drop them. Thus
we may assume that every component of X has dimension ≥ 1.

Let H ⊂ Pr be a general hyperplane, so that that H ∩X is 2-regular. Since Xi

has dimension ≥ 1 and is Cohen-Macaulay, h0(OXi) = 1. By Lemma 4.6, H ∩Li is
the span of H ∩Xi.

By Proposition 1.7 again, H∩X is the direct sum of its connected components,
which are also 2-regular, and it suffices to show that the same is true of H ∩Y . The
connected components of H ∩ Y have the form

⋃
i∈I H ∩ Li where I is a minimal

set of indices i such that
dim

[⋃

i∈I

Li ∩
⋃

j /∈I

Lj

] ≤ 0.
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By hypothesis Li∩Lj = Xi∩Xj , for all i 6= j, so
⋃

i∈I H∩Xi is a union of connected
components of H ∩X (extra components appear when there are 1-dimensional com-
ponents of X). Since such a union is a direct summand of H ∩ X, it follows that
H ∩ Y is a direct sum of its connected components.

Each 1-dimensional irreducible component Xi of X contributes a zero-
dimensional scheme spanning a single connected component H ∩ Li of H ∩ Y

that is a single linear space, and is thus 2-regular. The union of the higher-
dimensional irreducible components of X contributes the union of a subset of the
connected components of H ∩ X, which is thus 2-regular. But for an irreducible
component Xi of dimension at least 2, H ∩Xi is again irreducible and spans H ∩Li,
by Lemma 4.6. Thus we may use induction, and deduce that H ∩ Y is 2-regular as
required.

The case where H ∩ Y is 2-regular is similar. Since it will not be required for
the proof of Theorem 0.4, and is a consequence of that result in the case where X

is reduced, we omit the details.
(b): Consider the diagram

0 - H0(OY (1)) -
⊕

i

H0(OLi(1)) -
⊕

i<j

H0(OLi∩Lj (1))

0 - H0(OX(1))

ρY/X

?
-

⊕

i

H0(OXi(1))

⊕ρLi/Xi

?
-

⊕

i<j

H0(OXi∩Xj (1))

⊕ρLi∩Lj/Xi∩Xj

wwwwww

where the vertical maps are restrictions. The maps ρLi/Xi
are isomorphisms because

the Xi’s are linearly normal and each span Li. Since Xi ∩Xj = Li ∩ Lj the right
hand side vertical map is an equality. Thus the map ρY/X is also an isomorphism,
so X and Y are either both linearly normal in Pr or both not.

Proof of Theorem 0.4 continued. We complete the proof of Theorem 0.4 by proving
(a) ⇒ (b), using induction on dim X. A general hyperplane section of X is reduced
by Bertini’s Theorem, and by Proposition 2.1, it is small. By induction, it is 2-
regular. Thus by Theorem 1.6, it is enough to show that X is linearly normal.

If X were not linearly normal, we could write X as a linear projection of a
linearly normal variety Y in some larger projective space Ps = P(H0(OX(1)) from
a linear space M ⊂ Ps that is disjoint from Y in such a way that the projection is
an isomorphism on Y , but M is contained in the linear span of Y . We first want
to show that Y ∪M is small. For this we will need the following basic fact about
geometric degree:

Proposition 4.8 Suppose that Y ⊂ Ps is a scheme, and M ⊂ Ps is a linear

space disjoint from Y . Suppose that the linear projection from M , denoted πM :
Ps ..........- Pr, induces an isomorphism Y → πM (Y ). If L ⊂ Ps is a linear space

containing M , then πM (L) ∩ πM (Y ) = πM (L ∩ Y ) ∼= L ∩ Y , and the geometric

degree of L ∩ Y ⊂ Ps is the same as the geometric degree of πM (L) ∩ πM (Y ).
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Proof. First note that because M ⊂ L the map πM (Y ∩ L) → πM (Y ) ∩ πM (L)
is set-theoretically surjective, so it is enough to check the result locally at a point
q ∈ Y ∩ L.

Suppose that W is the space of linear forms vanishing on M , and that V ⊂ W

is the space of linear forms vanishing on L. We may identify W with H0(OPr (1)),
and under this identification, V is identified with the space of linear forms on Pr

that vanishes on πM (L). With this understanding, the first claim in the statement
of the theorem may be written, locally at q, as

OY ∩L,q
∼= OY,q/VOY,q

∼= OπM (Y ),πM (q)/VOπM (Y ),πM (q),

which holds because πM induces an isomorphism OY,q
∼= OπM (Y ),πM (q).

The statement about geometric degrees follows because all the isomorphisms
preserve linear forms.

Proposition 4.9 Suppose that Y ⊂ Ps is an algebraic set, and that M ⊂ Ps

is a linear space, disjoint from Y , such that the linear projection πM induces an

isomorphism Y → πM (Y ). If πM (Y ) is small, then so is Y ∪M .

Proof. Suppose that Λ ⊂ Ps is a plane that meets X = Y ∪ M in a finite set.
We must show that deg(X ∩ Λ) ≤ 1 + dim(Λ). Let L = span(Λ ∪M). As Y ∩ Λ
is a plane section of Y ∩ L, the degree of Y ∩ Λ is bounded by the geometric
degree of Y ∩ L. Proposition 4.8 implies that this geometric degree is the same as
the geometric degree of πM (Y ∩ L) = πM (Y ) ∩ πM (L) = πM (Y ) ∩ πM (Λ). Since
πM (Y ) is small by hypothesis, this is bounded by dim(πM (Λ)) + 1. Combining this
inequality with the obvious deg(M ∩ Λ) + dim(πM (Λ)) = dim(Λ), we deduce that
deg(X ∩ Λ) ≤ 1 + dim(Λ) as required.

Proof of Theorem 0.4 continued. From the fact that Y ∪ M is small, it follows
by Corollary 2.3 that Y is small. As Y is linearly normal by construction, we see
from induction on the dimension, Proposition 2.1 (a), and Theorem 1.6 that Y

is 2-regular. We want to show next that Y actually coincides with X (i.e. M is
empty), and as a first step we show the following result which interesting on its own.

Proposition 4.10 Let Y ⊂ Ps be a 2-regular algebraic set. If p ∈ Ps is a point

in the span of Y , then there is a plane L containing p such that L ∩ Y is finite and

L ∩ Y spans L.

Proof. Using the implication (b) ⇒ (c) of Theorem 0.4, we see that Y is the union
of a linearly joined sequence of irreducible varieties of minimal degree Y1, . . . , Yn.
By Proposition 2.4 (a) and Theorem 1.4 (c), the homogeneous coordinate rings of
the irreducible components of Y are Cohen-Macaulay. We will prove, by induction
on the dimension of Y , a more general result: if Y ⊂ Ps is the union of a sequence of
linearly joined irreducible schemes Y1, . . . Yn such that each homogeneous coordinate
ring SYi is Cohen-Macaulay, and no (Yi)red is contained in another, then for any
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point p ∈ span(Y ), there exists a plane L containing p such that L∩ Y is finite and
L ∩ Y spans L.

By Proposition 3.3 the problem reduces to the case where Y is connected. If
Y is supported at a point the assertion is obvious. Otherwise, each component of
Y must have dimension ≥ 1. Under this circumstance, we show that h0(OY ) = 1.
Since SYi has depth at least 2 we have

⊕
m H0(OYi(m)) ∼= SYi , so h0(OYi) = 1 for

every i. In general, if A,B ⊂ Ps are schemes with h0(OA) = h0(OB) = 1, and if
A ∩B 6= ∅, then taking the cohomology of the short exact sequence

0 - OA∪B
- OA ⊕OB

- OA∩B
- 0

gives that h0(OA∪B) = 1 also. In particular, h0(OY ) = 1 as claimed.
Let H be a general hyperplane containing p, defined by a linear form x ∈

H0(OPs(1)). Since H cuts properly every component Yi of Y , SH∩Yi = SYi/(x)
is again Cohen-Macaulay. It follows from the definitions that the sequence H ∩
Y1, . . . , H ∩ Yn is linearly joined. Since Y is connected and reduces we see that
h0(OY ) = 1. By Lemma 4.6 H is spanned by H ∩ Y , and we are done.

Corollary 4.11 If Y is a 2-regular algebraic set, and Y ′ is a scheme disjoint from

Y that meets the span of Y , then Y ∪ Y ′ is not small.

Proof. By Proposition 4.10 there is a linear space L that contains a point of Y ′ and
meets Y in a finite scheme that spans L∩Y . Whatever the dimension of L∩Y ′ this
violates the conclusion of Theorem 2.2, so Y ∪ Y ′ is not small.

Conclusion of the proof of Theorem 0.4. We may apply Corollary 4.11 to the case of
the small schemes Y ∪M from Proposition 4.9 and Y to conclude that M is empty!
That is, the original small scheme X was linearly normal, and thus 2-regular. This
finishes the proof of (a) ⇒ (b), and with it the proof of Theorem 0.4.

Remark 4.12 The conclusion of Proposition 4.10 seems to be true for a wide
class of schemes Y . We are grateful to Harm Derksen for pointing out that it does
not hold for arbitrary schemes, however: Let M1 ⊂ M2 ⊂ P4 be a line contained
in a 2-plane in P4, and let p1, p2 be general points of M2. Let Y = M1 ∪ P1 ∪ P2,
where Pi is a double point with (Pi)red = pi and general tangent vector. It is
immediate that Y spans P4. However, if q is a general point of P4, then q /∈
span(M1∪P1)∪ span(M1∪P2)∪ span(P1∪P2) and so any linear space L containing
q and spanned by L∩Y must contain at least p1, p2, and a point of M1 which is not
collinear with p1, p2. It follows easily that such an L is all of P4, and thus L ∩ Y is
not finite.

On the other hand, it seems that the conclusion of Proposition 4.10 might hold
for all reduced schemes. Kristian Ranestad has proven this in characteristic 0. We
are grateful to him for allowing us to include it here.
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Proposition 4.13 Let X ⊂ Ps be a reduced scheme over an algebraically closed

field of characteristic zero. If p is a point in the linear span of X, then there is a

linear subspace L ⊂ Ps containing p such that L ∩X is finite and contains a set of

distinct points that spans L.

Proof. We may as well assume that X spans Ps. If p ∈ X or X is finite there is
nothing to prove. So let X0 be a positive dimensional irreducible component of X

and let L0 be the linear span of X0. Since L0 has dimension r > 0, we may choose
distinct points x0, . . . , xr ∈ X0, and xr+1, . . . , xs ∈ X \ X0, such that x0, . . . , xs

span Ps.
If L ⊂ Ps is a linear space of dimension < s such that L is spanned by some set of

distinct points of X and p ∈ L, then we may replace X by (L∩X)red and we are done
by induction on s. Thus for example we are done if p ∈ L1 = span{xr+1, . . . , xs}.
Therefore we may assume that p /∈ L1, so the plane L2 = span(p, L1) meets L0 in a
unique point q. If q ∈ X, then since L2 = span{q, xr+1, . . . , xs} and r ≥ 1, we are
again done by induction.

Thus we may suppose q 6∈ X. It follows that the system of hyperplanes con-
taining L2 has no basepoints on X0. Since the the base field is of characteristic
zero it follows that a general hyperplane H containing L2 meets X0 in a reduced
set. Since X0 is reduced and irreducible, Lemma 4.6 shows that H ∩ X0 spans
H ∩ L0. Therefore we may find distinct points y1, . . . , yr ∈ H ∩ X0 such that
y1, . . . , yr, xr+1, . . . , xs span H. Since p ∈ H again we are done by induction on s,
and the proposition follows.

5 Small subspace arrangements

In this section we will study the combinatorics of the condition for union of
linear subspaces to be small. Recall that a subgraph F of a graph G is called a
forest if F is a disjoint union of trees (acyclic connected graphs). A leaf of F is a
vertex of F connected to at most one other vertex of F . A forest F ⊂ G spans G if
F contains all the vertices of G and any two vertices connected by a path in G are
connected by a path in F . We say that an ordering of the vertices of G is compatible
with a spanning forest F ⊂ G if the smallest vertex in every connected component
is a leaf, and the ordering restricts to the natural ordering on the vertices of any
path starting from that leaf.

By a subspace arrangement we mean a finite union of incomparable linear sub-
spaces in a projective space, say Y =

⋃n
i=1 Li ⊂ Pr. We generally do not distinguish

between the set of subspaces and their union. To a subspace arrangement Y we as-
sociate the weighted graph GY , whose vertices are the subspaces Li of Y , and whose
edges join the pairs of subspaces with non-empty intersection. We define the weight
of the edge (Li, Lj) to be 1+dim(Li ∩Lj), and the weight of a subgraph is the sum
of the weights of its edges. We will be interested in the spanning forests of maximal
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weight in GY . To simplify the notation, we give the vertex Li weight 1 + dim(Li)
and, for any graph G with edge and vertex weights we define the weighted Euler
characteristic χw(G) to be the sum of the weights of the vertices minus the sum of
the weights of the edges. Thus a spanning forest F for GY has maximal weight if
and only if it has minimal χw(F ).

The main result of this section says that smallness and linearly joined sequences
of components of Y are features of certain spanning forests in GY .

Theorem 5.1 Let Y ⊂ Pr be a subspace arrangement.

(a) Y is small if and only if the weighted graph GY has a spanning forest F with

χw(F ) = 1 + dim(span(Y )), the smallest possible value.

(b) If Y is small, then an ordering of the components of Y makes them into a

linearly joined sequence if and only if it is compatible with some spanning

forest satisfying the equality above.

We begin with an elementary result that shows the above given value of χw is
the smallest possible and explains the connection with linearly joined sequences.

Lemma 5.2 Let Y =
⋃n

i=1 Li ⊂ Pr be a subspace arrangement, and let F be a

spanning forest of GY .

(a) Suppose that Ln is a leaf of F . If Y ′ and F ′ are obtained from Y and F by

removing Ln, then

χw(F ) ≥ χw(F ′) +
[
dim(span(Y ))− dim(span(Y ′))

]
,

with equality if and only if Ln is linearly joined with Y ′ and either Ln ∩ Y ′ is

empty or Ln ∩ Y ′ = Ln ∩ Lj , where Ln is connected to Lj in F .

(b) χw(F ) ≥ 1 + dim(span(Y )).

Proof of Lemma 5.2. Part (a) is elementary, and part (b) follows from part (a) by
induction on the number of components.

Proof of Theorem 5.1. We prove parts (a) and (b) together. First suppose that F is
a spanning forest with χw(F ) = 1 + dim(span(Y )), and L1, . . . , Ln is a compatible
ordering of the subspaces in Y .

It follows that Ln is a leaf of F . Let Y ′ and F ′ be obtained by deleting Ln from
Y and F respectively. By Lemma 5.2 we have

1 + dim(span(Y ′)) ≤ χw(F ′)

≤ χw(F )− [
dim(span(Y ))− dim(span(Y ′))

]

= 1 + dim(span(Y ′))

so all the equalities hold. Thus Ln is linearly joined to Y ′ and, by induction on
the number of components, L1, . . . , Ln is a linearly joined sequence and Y ′ is small.
Using Theorem 0.4 it follows from Proposition 3.1 that Y is small.
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Now suppose that Y is small. By Theorem 0.4 (c) we may order the components
of Y to form a linearly joined sequence L1, . . . , Ln. It suffices to find a spanning
forest with which this ordering is compatible. We do induction on the number n of
components of Y , the case n = 1 being trivial.

Since the sequence L1, . . . , Ln−1 is linearly joined, Y ′ =
⋃n−1

i=1 Li is also small.
By induction, GY ′ contains a spanning forest F ′ with χw(F ′) = 1 + dim(span(Y ′))
such that the ordering L1, . . . , Ln−1 is compatible with F ′. Since Y ′ ∩ Ln =
span(Y ′) ∩ Ln is a linear space, and the ground field is infinite, Y ′ ∩ Ln is either
empty or it is equal to Lj ∩ Ln for some j < n. In the first case Ln is a connected
component of GY , so adjoining it to F ′ we get a spanning forest F of GY In the
second case, we may adjoin Ln to F ′ and connect it to Lj , obtaining a new spanning
forest. In either case we get equality in the formula of Lemma 5.2 (a), and the given
order is compatible with the forest F .

Theorem 5.1 makes it interesting to understand better which forests have min-
imal weighted Euler characteristic. If Y =

⋃
Li is a subspace arrangement, we say

that a forest F ⊂ GY satisfies the clique-intersection property if whenever L1, . . . , Lj

form a path in F we have

L1 ∩ Lj = L1 ∩ L2 ∩ · · · ∩ Lj .

Proposition 5.3 Let Y =
⋃n

i=1 Li ⊂ Pr be a small subspace arrangement with

intersection graph GY . A spanning forest F ⊂ GY has χw(F ) = 1 + dim(span(Y ))
(or equivalently, maximal weight) if and only if F satisfies the clique-intersection

property.

Proof. Prim’s algorithm [1957] (see also Graham-Hell [1985]) shows that a spanning
forest F in a weighted connected graph G has minimal χw(F ) if and only if, for each
edge (x, y) of G, the path in T joining x to y consists of edges (each) of weight ≥ the
weight of (x, y) (see also Tarjan [1983, pp. 71–72].) In particular, a spanning forest
T ⊂ GY satisfying the clique-intersection property must have minimal weighted
Euler characteristic. Since Y is small, Lemma 5.2 shows this is 1 + dim(span(Y )).

On the other hand, suppose that F is any spanning forest with χw(F ) =
1 + dim(span(Y )) and L1, . . . , Lj are the spaces along a path in F . By The-
orem 5.1 the spaces L1, . . . , Lj form a part of a linearly joined sequence
L−t, . . . , L0, L1, . . . , Lj , Lj+1, . . . , Ls involving all the components of Y . It fol-
lows that all of the Li ∩ Lj , for i < j are contained in one Lh ∩ Lj , with h < j. By
Prim’s algorithm, dim(Lh ∩ Lj) ≤ dim(Lj−1 ∩ Lj) so all the Li ∩ Lj are contained
in Lj−1 ∩ Lj . Thus by induction on j we get

L1 ∩ Lj = L1 ∩ Lj−1 ∩ Lj

= L1 ∩ L2 ∩ . . . ∩ Lj−1 ∩ Lj

as required.
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Another way of finding an ordering of the components of a small subspace
arrangement Y as a linearly joined sequence is the following: select vertices of GY

inductively by choosing, at each step, an unselected vertex ik which has the maximal
number of adjacent vertices among the vertices already selected. For a proof see
Tarjan-Yannakakis [1984].

The union of all spanning forests of maximal weight of GY is the subgraph
HY ⊂ GY with the same vertices as the intersection graph GY , but where Li and
Lj are joined by an edge only when Li∩Lj disconnects Y . Indeed, by Proposition 5.3
a maximal weight spanning forest F of GY satisfies the clique-intersection property
which easily implies that F is actually a spanning forest in HY . Conversely, if
Li∩Lj 6= ∅ disconnects Y and Li = Lk0 , Lk1 , . . . , Lkr

= Lj is the path joining Li and
Lj in a maximal weight spanning forest F of GY , then necessarily Lkm ∩ Lkm+1 =
Li ∩ Lj , for some m < r and the forest F ′ obtained by replacing in F the edge
(Lkm , Lkm+1) by (Li, Lj) is also of maximal weight.

6 Equations and syzygies of reduced 2-regular schemes

Next we show how to find generators for the ideal of a reduced 2-regular pro-
jective scheme using property (c) of Theorem 0.4. Consider a closed subscheme
X = X ′ ∪ X ′′ ⊂ Pr, and set L′ = span(X ′), L′′ = span(X ′′). In general it is
difficult to find generators for the intersection of two ideals, but if X ′ and X ′′ are
linearly joined (that is, X ′ ∩ X ′′ = L′ ∩ L′′) then we can give minimal generators
and a (non-minimal) free resolution of IX = IX′∪X′′ = IX′ ∩ IX′′ explicitly from
minimal generators and free resolutions for IX′/L′ and IX′′/L′′ . Our result extends
results of Barile and Morales [2000, 2003].

For simplicity we will suppose throughout that L′ ∪ L′′ spans the whole am-
bient space Pr, and leave the reader the easy task to adapt Theorem 6.1 below
to the degenerate case. We write µ(I) for the minimal number of generators of a
homogeneous ideal I, and reg(I) for its regularity.

Theorem 6.1 Let X = X ′ ∪X ′′ ⊂ Pr be a nondegenerate closed scheme that is

the union of two subschemes X ′ and X ′′ with linear spans L′ and L′′, respectively.

Suppose that X ′ and X ′′ are linearly joined along L = L′ ∩ L′′.
(a)

IX = ˜IX′,L′ + ˜IX′′,L′′ + IL′ · IL′′ ,

where ˜IX′,L′ is any ideal that vanishes on L′′ and restricts on L′ to the ideal

IX′,L′ of X ′ in L′, and similarly for ˜IX′′,L′′ .

(b) µ(IX) = µ(IX′,L′) + µ(IX′′,L′′) + µ(IL′)µ(IL′′).
(c) reg(IX) = max {2, reg(IX′), reg(IX′′)}.

The simplest way to construct an ideal ˜IX′,L′ as required in part (a) is to
choose coordinates in Pr so that x0, . . . , xi are coordinates for L′ while the linear
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space where x0, . . . , xi vanish is a subspace of L′′. Let IX′,L′ be the ideal of X ′ in
the homogeneous coordinate ring of L′. If we write generators for IX′,L′ in terms of
the coordinates x0, . . . , xi, then we may take the same expressions as generators for
˜IX′,L′ .

Geometrically, this construction amounts to choosing a subspace L′′0 ⊂ L′′ com-
plementary to L = L′ ∩ L′′, and taking ˜IX′,L′ to be the ideal of the cone with base
X ′ and vertex L′′0 . However, this is not the only choice possible: we may perturb
the generators given above by any elements of IL′ ∩ IL′′ . This may even change
the codimension of ˜IX′,L′ . Note that the generators of IX′,L′ have degree at least
2. Since (IL′ ∩ IL′′)≥2 = (IL′ · IL′′)≥2 such a perturbation will not, as it must not,
change the given form of IX .

Proof of Theorem 6.1. Since IX = IX′ ∩ IX′′ and IX′ + IX′′ = IL there is an
exact sequence

0 - IX
- IX′ ⊕ IX′′ - IX′∩X′′ - 0.

Since we have assumed that X ⊂ span(L′ ∪L′′) = Pr is nondegenerate, the space of
linear forms vanishing on L is the direct sum of the spaces of linear forms vanishing
on L′ and L′′. If we choose minimal free modules F ′, F ′′ and surjections F ′ → IL′

and F ′′ → IL′′ we get a minimal surjection F ′ ⊕ F ′′ → IL, and we may write a
minimal free resolution of IL in the form

∧(F ′ ⊕ F ′′)≥1 : · · · - ∧2 (F ′ ⊕ F ′′) - F ⊕ F ′ - IL
- 0.

Let ˜IX′,L′ be any ideal that vanishes on L′′ and restricts on L′ to the ideal of X ′ in
L′, and similarly for ˜IX′′,L′′ . Let G′1 and G′′1 be free modules that map minimally
onto ˜IX′,L′ and ˜IX′′,L′′ respectively, and set H ′

1 = F ′ ⊕ G′1 and H ′′
1 = F ′′ ⊕ G′′1 .

Because ˜IX′,L′ reduces modulo IL′ to IX′,L′ the induced map H ′
1 → IX′ is surjective,

and similarly for H ′′
1 → IX′′ . Choose now a minimal free resolution

H′ : · · · - H ′
2

- H ′
1

- IX′ - 0.

The Koszul complex on the generators of IL′ may be written as (∧F ′)≥1. Consid-
ering degrees, we see that each term ∧iF ′ is a summand of the corresponding term
H ′

i of H′, and we may write H ′
i = ∧iF ′ ⊕G′i for a suitable free module G′i. Define

H′′,∧F ′′ and G′′i similarly, and let a : H ′
1 ⊕H ′′

1 → IX′ ⊕ IX′′ be the projection.

We will choose a map of complexes φ : H′ ⊕H′′ → ∧(F ′ ⊕ F ′′)≥1 lifting the
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natural sum map IX′ ⊕ IX′′ → IL:

...
...

(G′2 ⊕ ∧2F ′)⊕ (G′′2 ⊕ ∧2F ′′)
?

φ2- ∧2F ′ ⊕ (F ′ ⊗ F ′′)⊕ ∧2F ′′
?

(G′1 ⊕ F ′)⊕ (G′′1 ⊕ F ′′)
? φ1 - F ′ ⊕ F ′′

δ
?

IX′ ⊕ IX′′

a
?

- IL.

b
?

We may make this choice so that the restriction of φ to the subcomplex (∧F ′ ⊕
∧F ′′)≥1 ⊂ H is the canonical injection into ∧(F ′ ⊕ F ′′)≥1.

The mapping cone of φ is a complex

· · · -
[
∧2F ′ ⊕ (F ′ ⊗ F ′′)⊕ ∧2F ′′

]
⊕

[
(G′1 ⊕ F ′)⊕ (G′′1 ⊕ F ′′)

]
δ⊕φ1- F ′ ⊕ F ′′

whose only homology is IX , occurring at H ′
2 ⊕H ′′

2 .
Since the map φ1 is surjective and φ2 maps ∧2F ′⊕∧2F ′′ onto the corresponding

summands of ∧2(F ′ ⊕ F ′′) = ∧2F ′ ⊕ (F ′ ⊗ F ′′) ⊕ ∧2F ′′, we see that IX has a free
resolution beginning with

· · · (G′2⊕∧2F ′)⊕(G′′2⊕∧2F ′′)⊕∧3(F ′⊕F ′′) - F ′⊗F ′′⊕ker(φ1) - IX
- 0.

The ideal IX is embedded in IX′⊕IX′′ as the diagonal. Thus the image of F ′⊗F ′′ in
IX is computed by lifting δ along φ1 and then composing with the map H ′

1⊕H ′′
1 →

IX′ ⊕ IX′′ , which lands in the kernel of the projection IX′ ⊕ IX′′ - IX′∩X′′ = IL.
Because of our choice of φ, the image of this composite is IL′ · IL′′ .

Because ˜IX′,L′ ⊂ IL′′ we may choose φ1|G′1 to be a map with image contained in
F ′′. We similarly choose φ1|G′′1 to map into F ′. It follows that ker(φ1) is the direct
sum of ker(φ1|G′1⊕F ′′) = Transpose(1,−φ1|G′1)(G′1) and a corresponding copy of G′′1 .
Since IX is embedded diagonally in IX′⊕IX′′ the image of Transpose(1,−φ1|G′1)(G′1)
is ˜IX′,L′ . The corresponding result for ˜IX′′,L′′ follows symmetrically, proving the
formula (a).

The resolution of IX that we have just constructed is not in general minimal.
However, the syzygies corresponding to elements of G′2 ⊕ G′′2 must involve the ele-
ments of G′1 ⊕ G′′1 . As these elements have degrees ≥ 2, the generators of G′2 and
G′′2 must have degrees ≥ 3. Thus the map from (F ′⊗F ′′) to S sends the generators
minimally onto the generators of IL′ ·IL′′ . Moreover, the generators of G′1 map onto
forms that minimally generate the ideal of X ′ in its span, and similarly for X ′′. If
there were a dependence relation of the form

f ′ + f ′′ + p = 0
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where
f ′ ∈ Im(G′1), f ′′ ∈ Im(G′′1) and p ∈ Im(F ′ ⊗ F ′′),

then working modulo the equations of L′ we see that f ′ = 0 and similarly f ′′ = 0.
It follows that p = 0 as well, establishing part (b), the desired relation on minimal
numbers of generators.

Statement (c) on the regularity follows at once from the form of the above (not
necessarily minimal) resolution.

Corollary 6.2 Let X =
⋃n

i=1 Li ⊂ Pr be a nondegenerate 2-regular union of linear

subspaces, linearly joined in that order as in Theorem 0.4. If, for each i ∈ {2, . . . , n},
L′i is a linear complement in Li for Lri∩Li, where span(L1, . . . , Li−1)∩Li = Lri∩Li

with 1 ≤ ri < i, then

IX =
n∑

j=2

Ispan(Lj ,Lj+1,...,Ln)Ispan(L1,...,Lj−1,L′
j+1,...,L′n)

=
n∑

j=2

Ispan(Lj ,L′
j+1,...,L′n)Ispan(L1,...,Lj−1,L′

j+1,...,L′n).

Proof. The case n = 2 is immediate. By induction on n we may assume that the
equations of X ′ = L1 ∪ . . .∪Ln−1 are given by a similar formula with n− 1 in place
of n. Set X ′′ = Ln. In the expression for IX in Theorem 6.1, the ideal ˜IX′′/L′′

may be taken to be 0. We may choose ˜IX′,L′ to be the ideal of the cone with base
X ′ and vertex L′n, as in the remark after Theorem 6.1. Since taking the ideals of
cones commutes with sums and products in an appropriate sense, and the cone over
a span of a collection of linear spaces is obtained by taking the span with the vertex,
we arrive at the given formula.

Remark 6.3 By the above choice of L′i we have, for each i < j, that

span(Li, L
′
i+1, . . . , L

′
j) = span(Li, Li+1, . . . , Lj).

Applying this with i = 1, j = n we see that L1, L
′
2, . . . , L

′
n span Pr. Moreover, since

span(L1, . . . , Lj) ∩ Lj+1 = Lrj ∩ Lj+1

by hypothesis, we see that L′j+1 is disjoint from span(L1, . . . , Lj). Thus if we think
of Pr as lines in a vector space V , then V is the direct sum of spaces corresponding to
L1, L

′
2, . . . , L

′
n. It follows that we may choose variables xi so that for each j the space

span(L′j+1, . . . , L
′
n) is defined by the vanishing of an initial segment x0, . . . , xij , and

this set of variables are coordinates on span(L1, . . . , Lj). If Y ⊂ span(L1, . . . , Lj) is
a subvariety, then the cone with base Y and vertex span(L′j+1 ∪ . . .∪L′n) is defined
by the equations of Y in span(L1, . . . , Lj) written in these coordinates. Moreover,
the cone over this variety with vertex L′j+2 is given by the same equations, and so
on.
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Corollary 6.4 The homogeneous ideal I ⊂ S of any 2-regular union of linear

spaces is generated by products of pairs of distinct (independent) linear forms.

Remark 6.5 Motivated by the structure in Corollary 6.4 for the homogeneous
ideal of a 2-regular union of linear spaces one may believe that such an ideal can
always be obtained from the squarefree monomial ideal of a 2-regular union of coor-
dinate subspaces in a larger space by factoring out a sequence of linear forms that
is a regular sequence on every component and any nonempty mutual intersection of
irreducible components. Unfortunately this is false as the following example shows:
Let X ⊂ P6 consist of a P3 and three general P2’s sticking out of it, each meeting the
P3 in a line, say denoted as Li. The set X is small, but the existence a squarefree
monomial ideal “inflation” as above would imply that the homogeneous ideal of the
union of the three (general) lines L1, L2 and L3 in P3 would also be generated by
products of pairs of linear forms, which is not the case.
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