Homework 2

Section 1.3

1, 3, 4: See pg 297

6. If n is not a prime, then there are two positive integers a, b, with a > 1, b > 1, such that n = ab. Thus $2^n - 1 = 2^{ab} - 1 = (2^a)^b - 1 = (2^a - 1)((2^a)^{b-1} + \dots + 1)$. Since a and b are both greater than 1, we heave that $2^a - 1$ and $(2^a)^{b-1} + \dots + 1$ are also greater than 1. Thus $2^n - 1$ is not a prime, a contradiction. Therefore, n must be prime.

7. Let $n = 2^{a}b$ where b is an odd number and a is a nonnegative integer. Assume b > 1. Then $2^{n} + 1 = 2^{2^{a}b} + 1 = (2^{2^{a}})^{b} + 1 = (2^{2^{a}} + 1)((2^{2^{a}})^{b-1} - (2^{2^{a}})^{b-2} + \dots + 1)$. Since $2^{2^{a}} + 1 > 1$ and b > 1, we get $(2^{2^{a}})^{b-1} - (2^{2^{a}})^{b-2} + \dots + 1 > 1$. Thus $2^{n} + 1$ is not a prime, and so so $n = 2^{a}$.

8. Assume there are only finitely many primes of the form 4k + 3. Denote them $p_1 = 3, p_2 = 7, \ldots, p_n$, where p_n is the largest prime of form of 4k + 3. Let now $N := 4(p_2 \times \cdots \times p_n) + 3$. It is not difficult to see that N is not divisible by any of the primes p_1, \ldots, p_n . On the other hand any odd integer is either of the form 4k + 1 or 4k + 3, and since N is not divisible by any prime p_1, p_2, \ldots, p_n , we may write $N = (4a_1 + 1)(4a_2 + 1) \cdots (4a_m + 1)$ for suitable positive integers a_1, \ldots, a_m . Expanding the right we may write $(4a_1 + 1)(4a_2 + 1) \cdots (4a_m + 1) = 4b + 1$ for some integer b. Thus

$$4(p_2 \times \cdots \otimes p_n) + 3 = 4b + 1,$$

an hence

$$2 = 4(b - p_2 \times \dots \times p_n).$$

This implies that

$$1 = 2(b - p_2 \times \cdots \times p_n),$$

which is a contradiction since the right hand side is an even number and the left hand side is an odd number. Therefore there exist infinitely many prime numbers of the form 4k + 3.

Section 1.4

1, 2. See pgs 297-298.