Homework 11

4.4

7. - see p. 311

17. First, we must show $a = a \land b \Leftrightarrow b = a \lor b$.

 (\Rightarrow)

 $a = a \wedge b$ $a \lor b = (a \land b) \lor b$ $a \lor b = (a \land b) \lor (1 \land b)$ $a \lor b = (a \lor 1) \land b$ $a \lor b = 1 \land b$ $a \lor b = b$

 (\Leftarrow)

 $b = a \lor b$ $a \land b = a \land (a \lor b)$ $a \land b = (a \land a) \lor (a \land b)$ $a \land b = a \lor (a \land b)$ $a \land b = (a \land 1) \lor (a \land b)$ $a \land b = a \land (1 \lor b)$ $a \land b = a \land 1$ $a \land b = a$

Now we must show that \leq is a partial order on B and that $0 \leq a \leq 1$ $\forall a \in B$. Reflexivity and transitivity are almost immediate:

$$a \wedge a = a \qquad \forall a$$

and $a = a \wedge b$ together with $b = b \wedge c$ yield

$$a \wedge c = a \wedge b \wedge c = a \wedge b = a$$

Weak Antisymmetry is also very easy. Suppose we have $a = a \wedge b$ and $b = b \wedge a$. Then, since $a \wedge b = b \wedge a$, we must have a = b. And then $0 \wedge a = (\neg a \wedge a) \wedge a = \neg a \wedge a = 0$ and $a \wedge 1 = a$, so $0 \leq a \leq 1 \quad \forall a$.

On the Boolean algebra of sets, our partial order corresponds to inclusion.

To define the Boolean algebra structure in terms of the partial order structure, basically you want to set $a \lor b$ to be the smallest element c satisfying $a \le c$ and $b \le c$, $a \land b$ to be the largest element d satisfying $d \le a$ and $d \le b$, and $\neg a$ to be the unique set f satisfying both $f \land a = 0$ and $f \lor a = 1$. Showing that existence and uniqueness of these definitions, and that they give you back the original boolean structure in full, is a trivial but exhausting exercise which I will omit.

5.1

1. \Rightarrow : Suppose that for any elements a and b in G, ab = ba. Then $(ab)^{-1} = b^{-1}a^{-1} = a^{-1}b^{-1}$.

 \Leftarrow : Suppose that for any elements a and b in G, $(ab)^{-1} = a^{-1}b^{-1}$. Then $(ba)(ab)^{-1} = (ba)(a^{-1}b^{-1}) = e$. Multiple (ab) to the equation $(ba)(ab)^{-1} = e$ both side from the right, we get ba = ab.

3,4,5. - see p. 311