SKETCH OF SOLUTIONS (HOMEWORK VII)

- 3.- By Wilson's theorem $18 \equiv 18! \equiv 16!(17)(18) \mod 19$ Therefore $1 \equiv 16!(-2)$ $\mod 19 \text{ i.e. } -10 \equiv 16! \mod 19 \text{ so } 9 \equiv 16! \mod 19$
- 12.- $2^{10000000} \equiv (2^{16})^{62500} \equiv 1^{62500} \equiv 1 \mod 17$ 15.- a) $7^{15} \equiv (7^3)^5 \equiv 3^5 \equiv 5 \mod 17$ Therefore $x \equiv 7^{15} \cdot 12 \equiv 5 \cdot 12 \equiv 9$
 - b) Analogously $4^{17} \equiv 5 \mod 19$ Therefore $x \equiv 5 \cdot 11 \equiv 17 \mod 19$
- 20.- Notice $168 = 2^3 \cdot 3 \cdot 7$ Since (42, a) = 1 we know a is odd, therefore $a^6 \equiv$ $(a^2)^3 \equiv 1 \mod 8$ (since every unit modulo 8 has order 2). Also, by FLT we get $a^6 \equiv (a^2)^3 \equiv 1 \mod 3$ and $a^6 \equiv 1 \mod 7$. These three congruences imply $a^6 \equiv 1 \mod 168$
- 22.- Since $30 = 2 \cdot 3 \cdot 5$. We only need to solve $n^9 n \equiv 0 \mod 2, 3, 5$ notice that if $n \equiv 0 \mod 2, 3, 5$ the congruences are satisfied. Otherwise n is a unit mod 2, 3, 5 and we obtain the equivalent set of congruences $n^8 \equiv 1$ mod 2, 3, 5. These sete of congruences can be simultaneously solved by FLT
- 23.- Apply FLT to every term of the sum. Adding all the terms we get $p-1 \equiv -1$ $\mod p$

Section 6.3

2.-

$$17^{45} \equiv 17^{4\cdot 11}17 \equiv 1^{11}17 \equiv 17 \mod 45$$

 $19^{45} \equiv 19^{2\cdot 22}19 \equiv 1^{22}19 \equiv 19 \mod 45$

7.- We know

$$2^{2^n} \equiv -1 \mod F_n$$

raising each side of the congruence to the power 2^{2^n-n} we get

$$\left(2^{2^n}\right)^{2^{2^n-n}} \equiv 2^{2^n\left(2^{2^n-n}\right)} \equiv 2^{2^{2^n}} \equiv 1 \mod F_n$$