SKETCH OF SOLUTIONS (HOMEWORK IV)

- 4.- The equation we must solve is 19x + 59y = 1706 with the restriction of x, ybeing positive. The solution is x = 37, y = 17
- 21.- Let x be the number of cocks, y the number of hens and z the number of chickens We have to solve the equations

$$\begin{array}{rcl} x + y + z &=& 100\\ 5x + 3y + \frac{z}{2} &=& 100 \end{array}$$

with the condition of x, y, z being non-negative. The solutions are

$$(x, y, z) = \begin{cases} (0, 25, 75) \\ (4, 18, 78) \\ (8, 11, 81) \\ (12, 4, 84) \end{cases}$$

Section 4.1

- 5.- Suppose a = 2n + 1 then $a^2 = 4n(n+1) + 1$, since either n or n+1 is even, we have that $8 \mid 4n(n+1)$ therefore $a^2 \equiv 1 \mod 8$
- 22.- **Base:** $4 \equiv 1 + 3 \mod 9$

Inductive step: Suppose $4^n \equiv 1 + 3n \mod 9$ then $4^{n+1} \equiv 4 + 12n \equiv 4$ $1+3+12n \equiv 1+3(1+4n) \mod 9$ therefore we only need to show that $3(1+4n) \equiv 3(n+1) \mod 9$ but $3+12n \equiv 3n+3 \mod 9 \Leftrightarrow 12n-3n \equiv 0$ $\mod 9 \Leftrightarrow 9n \equiv 0 \mod 9$

- 26.- We are looking for solutions of $x(x-1) \equiv 0 \mod p$. Since p is prime, either
- $\mod 47$)
- 38.- 15621

Section 4.2

- 2.- a) $x \equiv 3 \pmod{7}$ b) $x \equiv 2, 5, 8 \pmod{9}$ c) $x \equiv 7 \pmod{21}$ d) No solutions e) $x \equiv 812 \pmod{1001}$ f) $x \equiv 1596 \pmod{1597}$
- 6.- There are solutions iff $gcd(12,30) = 6 \mid c$ therefore iff $c \equiv 0, 6, 12, 18, 24$ mod 30 in every case there are 6 incongruent solutions mod 30 (By theorem 4.10)
- 8.- a) 7, b) 9, c) 8, d) 6