
MAT 311: Number Theory
Spring 2006

Solutions to HW7

1. (Davenport, pp.225, ex. 8.06) We would like to find a good linear congruential method for simulating
throws of a die. Recall that such a model is of the form xn+1 ≡ axn + c mod m, provided a ≡ 1
mod p for every prime p dividing m, a ≡ 1 mod 4 if 4 |m, and (c,m) = 1. Now, in our case, taking
mod 6 would be a big mistake, because to get a sequence of period 6 we would be forced to take the
coefficient a of xn and the constant c to be ±1 which then would give us a monotonic (i.e. increasing
or decreasing) sequence (not pseudorandom). So, let’s try to work mod 7. Now, a good choice for
simulating throws of a die would be xn+1 ≡ 3 · xn mod 7 (observe that 3 is a primitive root mod 7,
and taking index to the base 3 will reduce it to a linear congruential method mod 6). So, given seed
x0, the other numbers that are generated are 3x0, 32x0, . . . 36x0. For a suitable seed x0, this set of
numbers will trace all the numbers from 1 to 6.

2. (Davenport, p.219, ex. 8.07) We would like to find a good linear congruential method for simulating
throws of two dice. The idea is similar. First die will be simulated by the method we used in the first
problem above: xn+1 ≡ 3 ·xn mod 7. Similarly, for the second die we will choose yn+1 ≡ 5 ·yn mod 7
(we cannot take the same coefficient, because otherwise xn and yn would be related, especially when
the seeds x0 and y0 are equal. Notice that 5 is a primitive root, too.).

3. The period length of the sequence of pseudorandom numbers generated by the linear congruential
method with x0 = 0 and xn+1 ≡ 4xn + 7 mod 25 is 10 because x10 ≡ 0 and xi 6≡ 0 for 0 < i < 10.

4. The linear congruential method xn+1 ≡ xn + c mod m wouldn’t be a good choice for generating
pseudorandom numbers because -especially when n is large- after certain couple of steps one could
observe that the increment in xn is constant, so one could guess the next number xn+1 easily. If n is
small, it is also bad, since the period is going to be small.

5. Pollard ρ-method with x0 = 2 and xn+1 = x2
n + 1 gives x1 = 5 and x2 = 26 so that (x2 − x1, N) =

(21, 133) = 7 (by euclidian algorithm). At the second step the other factor (13) falls out.

6. xn+1 = axn + b would be a bad choice for xn on the Pollard ρ-method. The main reason is that the
sequence of numbers xn wouldn’t be randomly generated in the following sense: if a > 1, x2n − xn =
a(x2n−1 − xn−1), so all these differences are multiples of a. On the other hand, if a = 1, then
x2n − xn = x0 + nb; however, if m happens to share a common factor d with b, and if x0 6= 0 is not
divisible by d, then Pollard ρ-method (with this choice of xn’s) will not tell us whether d is indeed a
divisor of m. That explains why it is a bad choice.

7. We will show that composite Fermat numbers 22n
+ 1 are pseudoprimes to the base 2. Indeed, we

have 22n ≡ 1 mod 22n
+ 1. Raise both sides of the congruence to the power 22n−n. We get 222n

≡ 1
mod 22n

+ 1, as required.

8. To show that 1387 is a pseudoprime to the base 2, one needs to check 21387 ≡ 2 mod 1387. Observe
that 1387 = 19 · 73, 1386 = 2 · 32 · 7 · 11. By Fermat, 218 ≡ 1 mod 19. Hence 218·77 = 21386 ≡ 1
mod 19. On the other hand, a simple calculation shows that 218 ≡ 1 mod 73, and consequently
21386 ≡ 219·72+18 ≡ 218 ≡ 1 mod 73. Since (19, 73) = 1, these two congruences imply that 21386 ≡ 1
mod 1387, which implies that 21387 ≡ 2 mod 1387, as required. 1387, however, is not a strong
pseudoprime to the base 2 because it does not pass Miller’s test: 21386/2 = 2693 ≡ 512 6≡ ±1 mod 1387.
Indeed, 2693 ≡ 218·3829 ≡ 29 ≡ 512 mod 1387. Notice that we’ve used 218 ≡ 1 mod 1387, which can
be checked to be valid by hand. Finally, 1387 is not a Carmichael number because (a) 1387 = 19 · 73
is a product of distinct primes but (b) 72 = 73− 1 does NOT divide 1386 = 1387− 1.
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9. To prove that 1373653 is a strong pseudoprime to the base 2, it suffices to show that 2(1373653−1)/2 =
2686826 ≡ −1 mod 1373653. To show this, note that 1373653 = 829 · 1657. Since 2 is a quadratic
residue mod 1657 (because 1657 is 1 mod 8), say a2 ≡ 2 mod 1657, we have 2828 = a2·828 = a1656 ≡ 1
mod 1657 by FlT. Again by Fermat we have 2828 ≡ 1 mod 829. Combining these using Chinese
remainder theorem, we get 2828 ≡ 1 mod 1373653. So, 2686826 = 2828·8292414 ≡ 2414 mod 1373653.
Since 414 = 828/2 and 2828 ≡ 1 mod 1373653, 2414 ≡ ±1 mod 1373653. We have 414 = 2 · 32 · 23.
Using a scientific calculator, it is possible to see that 223·2 ≡ −1 mod 1373653. So taking 9th power
of both sides gives 2414 ≡ −1 mod 1373653, as required.
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