1.

2.

3.

MAT 311: Number Theory
Spring 2006

Solutions to HW6

(Davenport, pp.219, ex. 2.21) We will prove that d|n implies ¢(d) | ¢(n). Let the prime factorization
of d be d = Hfi 1 p;". Then the prime factorization of n is of the form

K N
n = Hp?i-i-ﬂi . quz
=1 =1

Then

Now, that all the factors are integers, we deduce that ¢(d) divides ¢(n).

(Davenport, p.219, ex. 2.22) We will show that for any prime p different from 2 and 5, there are
infinitely many numbers of the form Y . ;10" (called repeated units, or repunits, for short) divisible
by p. If p # 2,5, then (10,p) = 1, and so, by FIT, we have 10P~! =1 mod p. This implies also that
10?=1*% =1 mod p for any k > 0. So, p divides 10°P~D* —1 =9.(14+10410% + .. + 10 @-1)-1),
If p is not 3, then p should divide the second factor, which is a repunit for any k, done. If p = 3, then
the repunit 1 + 10 + - - - + 103"~ ! is divisible by 3, since 10 =1 mod 3. This completes the proof.

(a) We will show that 7(n) is odd iff n is a perfect square. Indeed, if the prime factorization of n is
n= Hfil p;, then 7(n) = Hf;(ai +1). So, 7(n) is odd iff all a;; + 1 are odd iff all «; are even
iff n is a perfect square.

. . . : . K
(b) We will show that o(n) is odd iff n is a perfect or twice a perfect square. Let n = [[,_, p}*, as

above. Then o(n) = [[X, (Z?;muf) So, o(n) is odd iff each Y 5%, p! is odd. But for if p; is
odd then this sum is = a; +1 mod 2; and if p; = 2 then this sum is definitely odd. So, this sum
is odd iff for any i we have either (a) p; is odd and «; is even, OR, (b) p; = 2 (doesn’t matter

what the power of 2 is). Therefore, o(n) is odd iff n is a perfect square or twice a perfect square.

(a) A short computer program can find the six smallest abundant number within fractions of a second:
12, 18, 20, 24, 30, 36.

(b) We will show that a multiple of an abundant or a perfect number (other than the perfect number
itself) is abundant. Let o(n) > 2n. Then we have

R S
z | nk yln z|k
because y |n and z |k imply that yz|nk (so that the latter sum is taken over fewer divisors).

Then
o(nk) > ZZyz = Zyz,z =o(n)-o(k) > (2n)k

yln 2|k yln 2|k
whenever k£ > 1 (since o(k) > 1if k > 1).



(c) We will prove that 2m~1(2™ — 1) is abundant if 2™ — 1 is composite. Indeed, if there is an
integer n # 1,2™ — 1 dividing 2™ — 1, then (2™ — 1) > (2™ — 1) + 1 = 2™. On the other
hand, ¢(2771(2™ — 1)) = (2™ 1o ((2™ — 1)) (since these two factors are obviously coprime)
=(2m —1)o(2™ — 1) > (2™ — 1)2™ = 2(2™~1 (2™ — 1)), as required.

5. (a) A(n) is not multiplicative simply because A(1) =0 # 1.
(b) We will prove the formula 3, A(d) = logn. Indeed,

ZA(d) = ZA(pi) = Zlogp:log szlogn.

d|n ptn ptn ptn

6. (a) We will show that the Liouville function A(n) is multiplicative. Given two coprime numbers n, m.
Say n = Hfil pit and m = ijl qJBJ. Note that p; # g; for any 4, j since (n,m) = 1. Now,
A(n) = (=) and A(m) = (—=1)™, and moreover A\(nm) = (—1)V*M since nm is a product of
all p7"’s and qf 7’s so that mm has N + M (distinct) prime factors. Hence X is multiplicative.
(b) We will show that the convolution inverse of A\(n) is the characteristic function of the squarefree
numbers (which is the function p?, where u is the Mobius function). So we have to prove that
(A p2)(1) =1 and (A pu?)(n) = 0 for n > 2. Since both A and u are multiplicative, so is A * u2.
Let n > 2, and write n = Hi]ilpio‘i, a; > 1. Then

K
(Axp?)(n) = TJ 1) (p HZA
1=1 i= ld‘po‘z

g

But p2(% z;) is zero except Yi- = 1 or p;, and in these cases it is equal to 1 (recall that the
Mobius function p is zero for non-squarefree numbers, and (—1)¥ if the number is product of k
-necessarily distinct- primes). So,

(e ) 0F) = M) - 12(1) + M) -0 = M) - AT = (<1 + (1) =0,

Hence, (A#u2)(n) = 0 for n > 2. On the other hand, since (1) = A(1) = 1 we have (A+p?)(1) = 1.
This completes the proof.

7. We will find a closed form expression for each of the following sums:

Let z := . Hence, nx = w(d)%. If we denote the identity function by ¢ (that is,
d|n d|n P\@)q
L(n) =n, Vn) then ne = (p*¢)(n). Now, let n = [[p;". Then, since p * ¢ is multiplicative,

(wxo)(IIpt) = TIwx0e =111 D2 u(d)b(p;i) but 4(pF) = 0 for all & > 2, thus

dlp;?

=TT (e + nouw ™) = [T = i) = wln).

Thus, z = “OEL)
(b) Let f(n) = p(n)p(n). Denote by I the constant function I(n) = 1, Vn. Then for n = [[p;" we
have

Y ofd = (F+D( et =TI * D)

d|n

— I s@e@r®) | = TTwem) -1+ ueem) -1

d|p;t

- [Ie-wi-w =T -



(c) Let g(n) = p%(n)/¢(n). Then for n = []p" we have

> gtn) = (gD i) =]](g* D)

2@, 0\ ), )
Py | =TI i+ 22

= 1I{ 2

dlp;?

= JJa+

(d) We will show that > ;, u()logd = A(n). This follows at once from Mobius inversion for-
mula since };,, A(d) = log(n) by Problem 5. We can also derive it directly: By definition
2od|n #(7)logd = (pxlog)(n). Now, notice that pu+I = €, where € is the unit function (1 ifn =1
and 0 otherwise). Thus,

17
¢(d)

=Tl = o ).
pi

pi — 1

((u*log) x I)(n) = (log*(p * I))(n) = (log *€)(n) = log(n).

Therefore we conclude that 3, (1 * log)(d) = ((u * log) * I)(n) = log(n). On the other hand,
since _ 4, A(d) = log(n), we have (1 *log)(d) = A(d) for any d (for instance, by induction).



