MAT 311: Number Theory
Spring 2006

HW2 - Solutions

1. (Davenport, pp.215-216, ex. 1.04) In general, given any positive integer \(n \), then \(\{ (n+1)! + m : 2 \leq m \leq n+1 \} \) is a set of \(n \) consecutive composite numbers, because \(m \) divides \((n+1)! \) (and hence \((n+1)! + m \)) whenever \(2 \leq m \leq n+1 \).

2. (Davenport, pp.215-216, ex.1.05) If we evaluate \(n^2 + n + 41 \) for first few \(n = 0 \), \(1 \), \(2 \), \ldots, we see that they turn out to be primes. However, for \(n = 40 \), we have \(n^2 + n + 1 = 41^2 \) which is composite. Alternatively, \(n = 41 \) actually divides \(n^2 + n + 41 \) since each term is divisible by 41. It is an interesting fact that for \(n = 0, 1, \ldots, 39 \) this expression gives prime numbers. This can be checked easily by writing a simple program (for instance in pari)

   ```
   for(n=0,40, if(isprime(n)=0, print(n)))
   ```

 which will print 40 as output.

3. (Davenport, pp.215-216, ex. 1.11) Assume that \(n \) is a composite number, say \(n = ab \), where \(a, b \geq 2 \). We want to show that \(2^n - 1 \) cannot be prime. Indeed,

 \[
 2^n - 1 = 2^{ab} - 1 = (2^a)^b - 1 = (2^a - 1)((2^a)^{b-1} + (2^a)^{b-2} + \cdots + (2^a)^1 + 1).
 \]

 Now, since \(a \geq 2 \), we have \(2^a - 1 \geq 3 \). Moreover, \(2^a - 1 \) is strictly less than \(2^n - 1 \) since \(a < n \). Hence \(2^n - 1 \) is a product of two numbers both of which are \(> 1 \). Therefore, \(2^n - 1 \) cannot be a prime. The converse does not hold, as for \(n = 11 \), we have \(2^{11} - 1 = 23 \cdot 89 \).

4. (Davenport, pp.215-216, ex. 1.12) Assume that \(n \) is not a power of 2. Then there is an odd integer \(m \) dividing \(n \), so we can write \(n = mk \) for some \(k > 1 \). Then we have

 \[
 2^n + 1 = (2^k)^m + 1 = (2^k + 1)((2^k)^{m-1} - (2^k)^{m-2} + \cdots - (2^k)^1 + 1).
 \]

 Similarly, \(2^k + 1 \) is a number greater than 1 but strictly less than \(2^n + 1 \) which divides \(2^n + 1 \). Hence \(2^n + 1 \) cannot be a prime. The converse does not hold here either: \(2^{(2^5)} + 1 \) is divisible by the prime 641.

5. Let \(\text{sq}(x) \) denote the number of squares less than \(x \). We claim that \(\text{sq}(x) = \) the greatest integer less than \(\sqrt{x} \), denoted by \(\lfloor \sqrt{x} \rfloor \). Given \(x \in \mathbb{R} \). Let \(S = \{ 1^2, 2^2, \ldots, m^2 \} \) be the set of squares less than \(x \) (listed in increasing order). Then clearly \(\text{sq}(x) = m \), that is, \(\text{sq}(x) \) is equal to the largest
integer \(m \) whose square is less than \(x \). We claim that \(m = \lfloor \sqrt{x} \rfloor \). Indeed, since \(\lfloor \sqrt{x} \rfloor < \sqrt{x} \), we have \(\lfloor \sqrt{x} \rfloor^2 < x \). So \(\lfloor \sqrt{x} \rfloor \) is an integer whose square is less than \(x \). This shows \(\lfloor \sqrt{x} \rfloor \leq \text{sq}(x) = m \). Conversely, if \(k \) is an integer that is strictly greater than \(\lfloor \sqrt{x} \rfloor \), then \(k^2 \geq \lfloor \sqrt{x} \rfloor^2 + 1 > \sqrt{x} \). Therefore, \(m = \text{sq}(x) \leq \lfloor \sqrt{x} \rfloor \). Combining it with the previous reverse inequality we obtain that \(\text{sq}(x) = \lfloor \sqrt{x} \rfloor \), as required.

To show why most numbers are non-square, we need to consider the limit of the ratio (number of all squares \(< x \))/ (all numbers \(< x \)) as \(x \to \infty \).

Indeed, this limit can be computed as

\[
\lim_{x \to \infty} \frac{\text{sq}(x)}{x} = \lim_{x \to \infty} \frac{\sqrt{x}}{x} \leq \lim_{x \to \infty} \frac{\sqrt{x}}{x-1} = 0
\]

So the limit we were looking for is 0. That means, as \(x \) gets larger, the number of squares less than \(x \) is ‘negligible’ compared to \(x \).

6. We would like to show that there are no prime triplets \((p, p+2, p+4) \) other than \((3, 5, 7) \). To show this note that among any \(n \) consecutive numbers there is one divisible by \(n \). In particular, one of \(p, p+1, p+2 \) is divisible by 3. Thus, one of \(p, p+2, p+4 \) is divisible by 3 (note that 3|\(p+1 \) iff 3|\(p+4 \)). Hence, if \((p, p+2, p+4) \) is a prime triplet, this forces \(p \) to be actually equal to 3 (if not, then \(p, p+2, p+4 \) are all primes \(> 3 \) and divisible by 3, a contradiction). So we conclude that \((3, 5, 7) \) is the only prime triplet.

7. We will show that every integer \(> 11 \) is the sum of two composite integers.

Indeed, if \(n \) is even, then \(n = (n-4)+4; \) and if it is odd, then \(n = (n-9)+9 \) is a sum of two composite numbers. In the first case, \(n-4 \) is an even number strictly greater than 7 (hence necessarily composite); and in the latter case \(n-9 \) is an even number strictly greater than 2 (hence again composite).

8. We will show that there are no primes of the form \(N^3 + 1 \) for \(N > 1 \).

Indeed, we can factorize the expression as \(N^3 + 1 = (N + 1)(N^2 - N + 1) \). The first factor is \(> 2 \) and strictly smaller than \(N^3 + 1 \). Hence \(N^3 + 1 \) cannot be prime.

9. The smallest five consecutive composite numbers are 24, \ldots, 28.