
SKETCH OF SOLUTIONS (HOMEWORK IX)

20.1- (c) Let
s = 1k + 2k + . . . + (p− 1)k mod p

If k = p− 1, then s = p− 1 by fermat’s little theorem.
If k < p − 1 then s = 0: proof: notice that if a is a unit mod p then
aks ≡ s therefore s(ak − 1) ≡ 0 so either s is zero or xk − 1 has p− 1 > k
roots.

20.2 (a) i) 6, ii) 4, iii) 4, iv) 4
(b) Express φ(m) = kem(a) + r with 0 ≤ r < em(a) then

1 ≡ aφ(m) ≡ akem(a)+r ≡ ar mod m

therefore r = 0(by the definition of em(a))
20.3 a) e11 = 10, e13 = 12, e15 = 4, e17 = 8, e19 = 18

(b) emn = lcm(em, en)
(c) e11227 = 1836
(d) chinese remainder theorem
(e) Let pz be the highest power of p that divides aep − 1, then epk =
epp

max{0,k−z}

(f) Compare [LeVeque] theorem 4-6.
20.4 (a) 2, 6, 7, 11 (b) d = 1 → 1, d = 2 → 12, d = 3 → 3, 9, d = 4 → 5, 8,

d = 6→ 4, 10, d = 12→ 2, 6, 7, 11
20.6 (a) g5, g7

(b) gcd(k, p− 1) = 1 proof: Suppose gcd(k, p− 1) = 1 then,there exist u, v
such that uk+v(p−1) = 1. If t is such that t < p−1 and (gk)t ≡ 1 mod p
then we get tuk + tv(p− 1) = t and

1 ≡ g(tuk)+tv(p−1) ≡ gt mod p

i.e. g is not a primitive root!. Now suppose that gk is a primitive root. If
gcd(k, p− 1) = G > 1 then we get (gk)

p−1
G ≡ (g

k
G )p−1 ≡ 1 mod p !

(c) The exponents of g which yield primitive roots are 5, 11, 13, 17, 19
20.7 5, 7, 17, 19
20.8 Suppose a is a primitive root.Since p is odd, p− 1 is even, say p− 1 = 2k.

Therefore
1 ≡ bp−1 ≡ b2k ≡ ak mod p

and thus a is not a primitive root.
21.1 (a) x = 5 (b) x = 27 (c) no solution (d)x = 10, 14, 23, 27
21.3 I(a) ≡ −I(b) mod p− 1
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