17.1- \(x \equiv 763 \)
17.2- (a) \(x \equiv 37 \) (b) \(x \equiv 559 \)
17.4- (a) Let \(m = p_1 \cdots p_n \) with \(p_i \) distinct primes. We must show that
\[
b^{1+\phi(m)} \equiv b \mod m
\]
Notice that for every prime \(q \) we have the following congruence for every \(a \):
\[
a^{1+\phi(q)} \equiv a \mod q
\]
(It is not true that \(a^{\phi(q)} \equiv 1 \mod q \) this fails for \(a \equiv 0 \mod q \))
Using the chinese remainder theorem we know there is a unique solution \(\mod p_1 \cdots p_n \) to the following system of congruences:
\[
\begin{align*}
b^{1+\phi(m)} & \equiv x \mod p_1 \\
& \vdots \\
b^{1+\phi(m)} & \equiv x \mod p_n
\end{align*}
\]
since \(b \) satisfies all congruences (by the previous remark) we get the result (remember that \(\phi \) is multiplicative).
(b) \(6^7 \equiv 0 \mod 9 \)

18.1 FERMAT
18.2 The proof for (a) and (b) is the same as in 17.4
- Use the quadratic formula to find the roots of the polynomial \(x^2 - (p + q)x + pq = 0 \) The answer is \(p = 1453 \) \(q = 3019 \)