SKETCH OF SOLUTIONS (HOMEWORK II)

- a) If u = du' and v = dv' with d > 1 then $a = u^2 v^2 = d(d(u')^2 d(v')^2)$, 3.1b = d(2du'v'), and $c = d(d(u')^2 + d(v')^2)$
 - b) u = 5, v = 3
 - d) 1.- u and v have no common factor. 2.- u and v have different parities.
 - e) Suppose $(a = u^2 v^2, b = 2uv, c = u^2 + v^2)$ satisfies the conditions in d), let p be a prime which is a common factor of a, b and c, then $p \mid (b+c) = (u+v)^2$ and $p \mid (a+b) = (u-v)^2$ therefore $p \mid (u+v)$ and $p \mid (u - v)$. Therefore $p \mid 2u$ and $p \mid 2v$. Since u and v have different parities, c is odd, therefore p cannot be 2. The only possibility left is that $p \mid u$ and $p \mid v$, but u and v have no common factor. Therefore u
- and v have no common factor. a) $x = \frac{(m-1)^2 2}{1+m^2}, y = 1 \frac{2m(m+1)}{1+m^2}$ 3.2
 - b) There should be at least one point with rational coordinates.
- 3.3 $x = \frac{1+m^2}{1-m^2}, y = m(\frac{1+m^2}{1-m^2}+1)$ 4.2 a) (8,8,32), (18,18,108), (32,32,4098)
 - b) $(n^2A)^3 + (n^2B)^3 = n^6(A^3 + B^3) = n^6C^2 = n^3c^2$
 - d) $2a^3 = c^2 \Rightarrow 2 \mid c^2$ therefore c = 2t. i.e. $2a^3 = 4t^2$ which implies $a^3 = 2t^2$, but then $2 \mid a$. That is a = 2s and $4s^3 = t^2$, therefore t = 2v and $s^3 = v^2$. Substituting we get that the solution (a, a, c)equals $(2(\sqrt[3]{v})^2, 2(\sqrt[3]{v})^2, 4(\sqrt[3]{v})^3)$ Therefore (2, 2, 4) is the only primitive solution with a = b
- 5.1 gcd(12345, 67890) = 15), gcd(54321, 9876) = 3