
SKETCH OF SOLUTIONS (HOMEWORK I )

1.1 The next two triangle-square numbers are 1225 and 41616. Suppose we
have a triangle-square number

n2 =
m(m + 1)

2
There are two possibilities: Either m is even or m+1 is even. Let us analyze
the case where m is even (for example m = 8, where we get 8(8+1)

2 = 62).
If m = 2t then we get

n2 =
2t(2t + 1)

2
= t(2t + 1)

Claim: The only possible common factor of t and 2t + 1 is 1:
Suppose d | t and d | (2t + 1) then d | (2t + 1)− t i.e. d | (t + 1), but then
d | (t + 1) − t i.e. d | 1. Thus d = 1 By the claim we get that both t and
2t + 1 are squares (since their product is a square), that is, t = s2 and

2t + 1 = 2s2 + 1 = u2

Notice that if we have a solution to the last equation we get a solution to our
problem, indeed, if 2s2 + 1 = u2 then s2(2s2 + 1) = s2u2 = (su)2 therefore
2s2(2s2+1)

2 = (su)2, defining m = 2s2 and n = su2 we get a triangle-square
number.
Now we will show that there are infinitely many triangle-square numbers
by exhibiting infinitely many solutions to the equation

2s2 + 1 = u2

First let’s find a single solution. Substituting the appropriate values for
the example m = 8 we get: m = 8 = 2t therefore t = 4, also t = 4 = s2

therefore s = 2, finally we get the solution 2s2 + 1 = 2(4) + 1 = 9 = u2

therefore u = 3 Now let’s produce infinitely many solutions from a given
solution:
Claim: If s and u satisfy

2s2 + 1 = u2

then s̄ = 2su and ū = (2u2 − 1) satisfy

2s̄2 + 1 = ū2

Proof

2s̄2 + 1 = 2(2su)2 + 1 = 2(4s2u2) + 1 = 4(2s2u2) + 1

Now we use the hypothesis

2s2 + 1 = u2

and we get:

2s̄2 + 1 = 4(2s2u2) + 1 = 4(u2 − 1)u2 + 1 = 4u4 − 4u2 + 1 = (2u2 − 1)2 = ū2

A complete solution to the problem is given in chapter 28.
1



2 SKETCH OF SOLUTIONS (HOMEWORK I )

1.3 Suppose p,p + 2 and p + 4 are primes with p ≥ 3. If p = 3n + 1 then
p + 2 = 3n + 3 = 3(n + 1) which is divisible by 3! If p = 3n + 2 then
p + 4 = 3n + 6 = 3(n + 2) which is divisible by 3! Therefore p = 3n, that
is possible only if n = 1 therefore the only prime triplet is 3, 5, 7

1.4 Notice that n2 − a2 = (n− a)(n + a)
2.1 a) The only squares modulo 3 are 0 and 1 and 1 + 1 = 2 therefore, at least

one of a and b must be 0 modulo 3
b) The only squares modulo 5 are 0, 1 and 4, if neither a nor b are divisible
by five, the only possibility left is that one of them leaves a residue of 1
and the other a residue of 4, but then c leaves a residue of zero. Therefore
at least one of a, b, c is divisible by 5

2.3 a) Any odd number 2n + 1: a = st = (2n + 1)1 (if n = 0 we take b = 0 and
c = 1 otherwise we use the theorem)
b) Any multiple of 4:
b = s2−t2

2 with s = 2n + 1, t = 2m + 1 and n > m. Therefore b =
4[n(n+1)−m(m+1)]

2 since both n(n + 1) and m(m + 1) are even we get b =
8k
2 = 4k On the other hand, we can express any multiple of 4 as in the

expression for b:

4k =
(2k + 1)2 − (2k − 1)2

2
2.4 The following is a list with 8 different primitive Pythagorean triples with

c = 32045:
a b c

2277 31964 32045
8283 30956 32045
17253 27004 32045
21093 24124 32045
23067 22244 32045
27813 15916 32045
31323 6764 32045
32037 716 32045


