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Abstract

We introduce ideas and techniques from cryptography, using mathematics related
to the middle-school mathematics curriculum. The majority of the material in this
note was presented as part of a professional development workshop for middle-school
mathematics teachers.

1 Pleased to Meet You, Hope You Guessed My Name

People have been interested in writing secret messages almost as long as people have
been able to write. During the twentieth century, it became clear that cryptography had
a lot to do with mathematics, and the role of making and breaking codes has increased
dramatically in the military since the First World War.1 Although you may not know it,
cryptography plays a role in most of our daily lives as well. When we make a purchase
over the internet, our web browser uses encryption to keep our financial data secure.
Automatic Teller Machines (ATMs), satellite TV, and a number of other everyday services
use encryption. Secret codes are also just kind of fun to fiddle with, and fun is part of our
main focus today.

First, let’s introduce some terminology. The discipline of encoding and decoding se-
cret messages is called cryptography, from the Greek words kryptos (κρνπτoσ), meaning
hidden or secret, and graphia (γραφια), meaning writing. The original, readable message
is referred to as the plaintext or clear text. Encoding the message is called encryption
(or sometimes enciphering), and the hard-to-read result is called the ciphertext (or the

∗Institute for Mathematical Sciences, Stony Brook University, Stony Brook, New York, 11794-3660.
scott@math.sunysb.edu, http://www.math.sunysb.edu/∼scott/

1 Many people have claimed that if the Allies hadn’t broken the German Enigma code, the outcome of
the Second World War would have been different.
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encrypted message). Turning the ciphertext back into plaintext is called decrypting, de-
ciphering, or decoding the message. Usually the conversion process depends on an ad-
ditional piece of information, usually called the key or the password; the key forms the
basis of the security and must be kept private. Sometimes there are different keys used
to encrypt and decrypt messages. If it is infeasible to determine the key used for decryp-
tion without knowing the key used to encrypt, this method can be used for public-key
cryptography (which we won’t be able to discuss). Finally, decrypting a message without
being told the corresponding key is called cracking or breaking the code.

Technically speaking, there is a difference between a cipher and a code: a code works
at the level of meaning, replacing words or phrases with others (for example, when par-
ents refer to a four-year-old’s upcoming birthday party as “the festivities” to avoid excit-
ing her prematurely), while a cipher replaces individual letters or groups of letters with
others. Naturally, these are not mutually exclusive, and are often used together.2 While
formally they are different things, one often informally uses the word “code” when speak-
ing of ciphers. Since we will only be looking at ciphers, we will use the terms interchange-
ably.

One last bit of terminology we must cover is the choice of Alphabet for the plaintext
(and the ciphertext). We need to agree up front which characters we will be writing our
messages in. Prior to the advent of computers, messages typically consisted of only the
26 letters of the alphabet; all spaces, punctuation, numerals, and so on were removed
from the message prior to encryption. No distinction was made between upper-case and
lower-case letters. Today, a computer tends to do the enciphering and deciphering, and
the alphabet is much larger, typically containing 128, 256, or more character codes. We’ll
adopt the more spy-like convention of using just 26 characters.

In this note, we’ll write our plaintext in all lower case letters, as
abcdefghijklmnopqrstuvwxyz

and our ciphertext in all uppercase letters
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Since we’ll be leaving out the spacing and punctuation, it is traditional to group the text
into blocks of letters (typically five), so that one doesn’t get lost.

For example, if we wanted to encrypt the sentence “Please do not read this.”, we

2Another way to create a secret message is using steganography, which is the process of hiding the fact
that a message exists at all. Using “invisible ink” is steganography, as is hiding messages within other mes-
sages. For example, looking at the second letter of each word in the message below (which was reportedly
sent by a German spy during World War I [Kah, p. 521]),

Apparently neutral’s protest is thoroughly discounted and ignored.
Isman hard hit. Blockade issue affects pretext for embargo on
byproducts, ejecting suets and vegetable oils.

one finds a rather different message, namely

Pershing sails from NY June I.

Steganography is often used to augment cryptography, and is also related to “digital watermarking”.
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would first represent it as
pleas edono tread this

Note that the last group has only four letters, because the length of the message was not
divisible by 5.

2 I’m a Substitute for Another Guy

The simplest ciphers are based on the idea of replacing each letter in the plaintext with
a different letter. For example, instead of a we might use R, for b write A, and so on.
This class of ciphers is called a substitution cipher (more precisely, a monoalphabetic
substitution cipher); these are the types of ciphers you sometimes see on the crossword
page of the newspaper. Note that in this case, the key is rather long (namely, just as long
as the alphabet, since we must say which character gets replaced with which), and there
are many possible encryptions (26! or 40, 329, 146, 112, 660, 563, 584, 000, 000). But, they
are still pretty easy to crack.

Let’s look at an example.

RUQDY QNTRZ AQIQB NAZNC YQQBQ WBJQR UJWXS RUNVW WENCQ TRYQK QRK

At first glance, this may seem like total gibberish. But upon a little examination, we
see that the letter Q occurs 11 times, much more than any other. It would reasonable to
guess that Q stands for a commonly occurring letter. In English, the letter e is the most
common letter, followed by t , a, and o.3

Letter Frequency Letter Frequency Letter Frequency
a 8.167 j 0.153 s 6.327
b 1.492 k 0.772 t 9.056
c 2.782 l 4.025 u 2.758
d 4.253 m 2.406 v 0.978
e 12.702 n 6.749 w 2.360
f 2.228 o 7.507 x 0.150
g 2.015 p 1.929 y 1.974
h 6.094 q 0.095 z 0.074
i 6.966 r 5.987

Table 1: Frequency (in percent) of occurrence of letters in English text (adapted from [Lew])

3 This frequency sometimes shows up as etaoin shrdlu in pre-1980s print, because the keys on Lino-
type machines used to set type were arranged in frequency order. For the same reason, qwerty or asdf
show up when people bang on keyboards.
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So, in our message, we would likely guess that Qcorresponds to e, and that W, R, and
N correspond to o, a, and t , although these last three might be permuted. Then we plug
them in, and guess at which letters correspond to which until the message makes sense.
Once we have a few letters, we can try to recognize patterns corresponding to common
words (the , and , and so on). We can also make use of the fact that the most common
pairs of letters in English are (in order) th , he , in , en , nt , re , er , an , ti , es , on , at , se ,
nd , or , ar , al , te , co , de , to , ra , et , ed , it , sa , em, and ro .

Making use of such probabilistic guesses is called frequency analysis. As the length
of the ciphertext increases, frequency analysis becomes increasingly reliable. There are
records from the 9th century A.D. indicating that frequency analysis was in use in the
Arab world at that time. For this method to work, typically you need a message of at
least 50 characters.

So far, we have what is below (assuming the guesses for characters are correct):

RUQDY QNTRZ AQIQB NAZNC YQQBQ WBJQR UJWXS RUNVW WENCQ TRYQK QRK
a e et a e e t t ee e o ea o a t o o t e a e ea

It still takes quite a bit of playing around to get the rest of the message. Remember
that the spaces were removed from the original; as a hint, I’ll put them back in, together
with our guesses. To avoid spoiling the fun for those who don’t want a hint, it is in a
footnote.4

3 The Caesar Cipher and Modular Arithmetic

In order to better understand substitution ciphers, and make something better out of
them, we do what is very common in mathematics: we make the problem easier, and
don’t worry (at first) that it seems like a step backwards.

So, instead of considering all possible substitutions, we just think about some simple
ones: those where we leave the alphabet in order, and just shift by a few letters. Julius
Caesar is reported to have used such a cipher with a shift of 3 for his military communi-
cations.

The correspondence between plaintext and ciphertext is as follows:

abcde fghij klmno pqrst uvwxy z
XYZAB CDEFG HIJKL MNOPQ RSTUV W

4A hint:
R UQDYQNTRZ AQ IQBN AZ NCYQQ BQWBJQ RU JWXS RU NVW WE NCQT RYQ KQRK
a e et a e e t t ee eo e a o a t o o t e a e ea
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If we encrypt veni vidi vici using the Caesar cipher, we get SBKF SFGF SFZF.
To decrypt, we just shift back by 3 letters.

So where’s the math? Let’s see if we can find it.

First, we assign a number to each letter of the plaintext alphabet, beginning with 0, so
we that have the correspondence below.

a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Now, we can view our enciphering as taking the number corresponding to the letter,
adding 3 to it, and then writing down the letter that corresponds to the sum. If the result
is 26 or larger, we subtract 26 so that if falls back in the desired range.

This type of arithmetic is called addition modulo 26 or just adding mod 26. The
number 26 is called the base. You are already quite familiar with another type of modular
arithmetic, namely working mod 12. When we answer a question like “What time will
it be 4 hours after 10 o’clock?”, we are adding mod 12. Another way to view modular
arithmetic is that we do “regular” arithmetic, divide the answer by the base, and then
only keep the remainder.5 We sometimes also work modulo 7 when we make statements
like “My birthday is on a Friday this year, so next year it will be on Saturday”– here we
are using the fact that 365 = 7× 52 + 1, so 365 ≡ 1(mod 7). Waiting a year advances the
day of the week by one (except in a leap year).

Returning to our encryption problem,
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we see that applying the Caesar cipher cor-
responds just to adding 3 (mod 26). To
decipher, we can either subtract 3 mod-
ulo 26 (remembering to add 26 to the an-
swer if it turns out negative), or we can
add 23, which is 26 − 3. These give ex-
actly the same answer after reducing mod-
ulo 26, in the same way that a clock will
read the same if you move the hands ahead
by 3 hours or back 9 hours.

A useful mental model for modular ad-
dition is a “number circle”. Take the fa-
miliar number line and wrap it around a
circle so that the base (26) falls on zero.
Then adding corresponds to a clockwise
rotation, and subtraction to counterclockwise rotation.

Naturally, we don’t have to shift by 3 as Julius Caesar did (apparently Augustus Cae-
sar preferred to shift by 1). We have 25 possible ciphers like the Caesar cipher, which are

5 Modular arithmetic works for multiplication as well as for addition and subtraction. One has to be
careful about what division means, however. We’ll cover this further in section 6.
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called shift ciphers, or sometimes the general shift cipher is called “a Caesar cipher”.6 If
someone says the Caesar cipher, they almost certainly mean a shift cipher with a shift of 3.

Notice that shift ciphers are very easy to break, since you only have to guess one letter
and then you know everything. If you haven’t already discovered it, the title of this note
is encrypted with a shift cipher, leaving the spaces and punctuation in. So that you don’t
have to look back, the (encrypted) title is

V’IR TBG N FRPERG

4 Many Caesars: the Vigenère Cipher

So far, it seems we’ve gone in the wrong direction: from the poor security offered by the
general substitution cipher to nearly no security offered by a shift cipher. But, taking a
step backward will allow us to leap forward.

In the Vigenère Cipher, we choose a word or phrase as our encryption key. We then
convert it to a sequence of numbers (again using a=0, b=1, . . . , z=25), and apply a differ-
ent shift to the plaintext corresponding to the letters in the keyword. When we use up the
shifts from the keyword, we repeat it again.

This is probably best understood via an example. Suppose we choose jasmine as our
key, and want to encrypt the phrase we are getting hungry . Translating jasmine
to its numerical equivalents gives the sequence of shifts 9, 0, 18, 12, 8, 13, 4. So we work
as follows:

w e a r e g e t t i n g h u n g r y

22 4 0 17 4 6 4 19 19 8 13 6 7 20 13 6 17 24
+ 9 0 18 12 8 13 4 9 0 18 12 8 13 8 4 9 0 18
= 5 4 18 3 12 19 8 2 19 0 25 14 20 2 17 15 17 16

F E A D M T I C T A Z O U C R P R Q

Depending on where it falls in the message, each character of plaintext could be any
one of several ciphertexts. For example, in the example above, e becomes E, M, or I , and
the two Es in the ciphertext come from an e or an r .

The Vigenère cipher is significantly harder to break than a Caesar cipher. For about
300 years, it was believed to be unbreakable, although Charles Babbage and Friedrich Ka-
siski independently determined a method of breaking it in the middle of the nineteenth
century. The method uses repeated patterns in the text to determine the length of the key.

6 One shift cipher commonly used in internet postings or emails that may tell the ending of a movie or
the answer to a puzzle is called “rot13” (for rotation by 13). This is just a Caesar-like cipher with a shift of 13
(leaving all the non-alphabetic text alone). This is popular because applying the same shift again decodes
the text.
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Once it is known that the key is, say, 8 characters long, frequency analysis can be applied
to every 8th letter to determine the plaintext. This method is called Kasiski examination
(although it was first discovered by Babbage). Despite the fact that the method of break-
ing the Vigenére cipher had been published 50 years earlier, the cipher was widely held
to be unbreakable until the 1920s, being described as “impossible of translation” in an
article appearing in Scientific American in 1917.

We should remark that one can
a b c d e f g h i j k l m n o p q r s t u v w x y z

a A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

b B C D E F G H I J K L M N O P Q R S T U V W X Y Z A

c C D E F G H I J K L M N O P Q R S T U V W X Y Z A B

d D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

e E F G H I J K L M N O P Q R S T U V W X Y Z A B C D

f F G H I J K L M N O P Q R S T U V W X Y Z A B C D E

g G H I J K L M N O P Q R S T U V W X Y Z A B C D E F

h H I J K L M N O P Q R S T U V W X Y Z A B C D E F G

i I J K L M N O P Q R S T U V W X Y Z A B C D E F G H

j J K L M N O P Q R S T U V W X Y Z A B C D E F G H I

k K L M N O P Q R S T U V W X Y Z A B C D E F G H I J

l L M N O P Q R S T U V W X Y Z A B C D E F G H I J K

m M N O P Q R S T U V W X Y Z A B C D E F G H I J K L

n N O P Q R S T U V W X Y Z A B C D E F G H I J K L M

o O P Q R S T U V W X Y Z A B C D E F G H I J K L M N

p P Q R S T U V W X Y Z A B C D E F G H I J K L M N O

q Q R S T U V W X Y Z A B C D E F G H I J K L M N O P

r R S T U V W X Y Z A B C D E F G H I J K L M N O P Q

s S T U V W X Y Z A B C D E F G H I J K L M N O P Q R

t T U V W X Y Z A B C D E F G H I J K L M N O P Q R S

u U V W X Y Z A B C D E F G H I J K L M N O P Q R S T

v V W X Y Z A B C D E F G H I J K L M N O P Q R S T U

w W X Y Z A B C D E F G H I J K L M N O P Q R S T U V

x X Y Z A B C D E F G H I J K L M N O P Q R S T U V W

y Y Z A B C D E F G H I J K L M N O P Q R S T U V W X

z Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

Table 2: A tabula recta

implement this cipher using a tab-
ula recta, which is a 26 × 26 table
listing all the shifts corresponding
to each letter of the key. It is really
just an addition table for letters. To
use the tabula recta, the plaintext let-
ter gives the row, and the key let-
ter gives the column. The letter of
ciphertext is then found where the
two intersect. Using such a table,
one doesn’t need to do the numeri-
cal conversion and the modular ad-
dition; this is how people in the six-
teenth century used the cipher. How-
ever, the underlying mathematical
structure is hidden, which is a disadvantage for our purposes.

The Vigenère cipher is named after Blaise de Vigenère, a sixteenth century diplomat
and cryptographer, although the cipher was invented by Giovan Batista Belaso in 1553.
Vigenère actually invented a different cipher, which we will now discuss.

The cipher Vigenère invented is a little harder to crack than the one that bears his
name. In this cipher, rather than repeating the key, one begins with a key, and then ap-
pends the text itself to get the shifts to apply. This is a type of autokey cipher, because the
key is (semi-)automatically generated by the message itself.

As an example, we will use the same plaintext (we are getting hungry ) and
initial key (jasmine ), and apply Vigenère’s autokey cipher. The autokey will then be
jasminewearegettin , giving us the encryption below.7

7 Some accounts append the ciphertext to the initial key rather than the plaintext as we do here. In both
cases, there is a serious drawback to this cipher: if an error is made in enciphering even one letter, it will
propagate throughout the remainder of the text.
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w e a r e g e t t i n g h u n g r y

22 4 0 17 4 6 4 19 19 8 13 6 7 20 13 6 17 24
+ 9 0 18 12 8 13 4 22 4 0 17 4 6 4 19 19 8 13
= 5 4 18 3 12 19 8 15 23 8 4 10 13 24 6 25 25 11

F E A D M T I P X I E K N Y G Z Z L

Another variation on these same ideas is to use a passage from a book in order to
determine the sequence of shifts. The location of the start of the passage serves as the key.
For example, the key might be given as 123:5, and then cryptographer turns to page 123
and begins with the 5th word to extract the key. The Bible and the works of Shakespeare
were both popular to use as source books.

While these methods do away with the problem of repeating shifts that hinder the
Vigenère cipher, frequency analysis and similar techniques can still be employed. This is
because certain letters (specifically e, t , o, etc.) will still occur more frequently in both
the text and the key. Given a long sample of ciphertext, a competent cryptographer can
break both of these codes.

5 An Unbreakable Cipher

Is it possible to create a cipher that no one can break, no matter how smart they are and
how hard they try? Yes, as long as you remember that you don’t get to know the key to
crack the code.

The idea is similar to the Vigenère cipher, except that instead of using English text as
our key, we use a sequence of random numbers. It is critical that the random sequence of
numbers be truly random, and that the sequence never be reused. Such a cipher is called
a one-time pad, and was proven to be unbreakable by Claude Shannon in 1949.

To use a one-time pad, we have an arbitrarily long list of random numbers. This
sequence is our “one-time pad”. We add each of these in turn to our plaintext, and reduce
modulo 26. This gives our ciphertext. To decrypt, we reverse the process, subtracting the
same sequence of numbers from the ciphertext. For this to be truly secure, we can never
use this sequence of numbers again, hence the phrase “one-time” in the name.

The security of the system stems from the fact that any plaintext can encrypt to any
ciphertext of the same length. For example, the ciphertext QQQQQQcould correspond to
the plaintext attack or gohome. For the first, the key sequence is 16,23,23,16,14,6 and in
the second message, the key is 13,2,12,2,4,9. Since the key could be any of these (or any
other one), there is no way to break the cipher except to get your hands on the key.

One-time pads were used heavily during the second world war, and during the cold
war. Books consisting of long lists of random digits were given to agents. But it was
critical that the codebooks not fall into enemy hands, or the ciphers would immediately
become useless. Anyone who possessed the codebook could easily decrypt the messages.
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It is also very important that the numbers be truly random. A computer program can-
not generate truly random numbers without some outside source of randomness. Several
successful attacks on early “secure” web communications relied on weaknesses in the
browser’s random number generator. There is a story that during World War II, some of
the codebooks were generated by drawing numbered balls out of a bin. However, the
person drawing the balls would put the ball back if he drew it twice in a row, think-
ing a repeated number wasn’t random. This slight deviation from true randomness was
enough to enable several “unbreakable” messages to be broken.

6 Modern Times 8

Having squeezed all of the juice out of the idea of adding letters to others, we go back and
look again at other ways to proceed. It seems like it should work to multiply the numeric
codes for the letters in the plaintext instead of adding them, so let’s try that. Just as before,
we’ll begin with something analogous to the Caesar cipher: our key is a single number
between 1 and 25, and we multiply each letter by that number and reduce modulo 26.

Since the Caesar cipher added 3, let’s try multiplying by 3. Suppose our plaintext is
blue . Representing this as numbers, we have the sequence 1,11,20,4 (refer to the chart on
page 5 if you like). Now we multiply each one by 3 and reduce modulo 26. For the first
letter of the ciphertext, we get the numeric value 3, or D. The second letter is 33 mod 26, or
7, which we can write as H. The third is 60 mod 26, which is 8 (or I ), since 60 = 8 + 2× 26.
And our final letter encrypts to M, so the ciphertext is DHIM.

One thing to notice here is that we get a different class of substitution ciphers out of
this process. The Caesar ciphers gave us one set, and these multiplicative ones give us
another set. These seem to mix things up a little more (for example, although l and u
start out far apart in the alphabet, they encrypt to the adjacent letters Hand I .

Now that we see how to encrypt, let’s try to decrypt this enciphered message, assum-
ing we know that the encryption key was 3. That is, we are given the ciphertext DHIM
as well as the fact that the encryption key was 3, and we want to recover the plaintext.
Writing the ciphertext as numbers, we have 3,7,8,12 and we want to divide each by 3. The
first is easy: 3/3 = 1, and sure enough, D corresponds to b. But 7/3 = 21

3 , and we don’t
have a letter for that. Is all lost?

We just have to make sense of what we mean by division. Remember, we are working
modulo 26, so we want to solve the equation

7 = 3x(mod 26).

8 Because of time limitations, this and following sections were not covered in the professional develop-
ment workshop.
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This means we get to add multiples of 26 to get things to work out; the above equation is
the same as saying

7 = 3x or 7 + 26 = 3x or 7 + 52 = 3x or . . .

Since 7 + 26 = 33, we see that x = 11 works, and our plaintext letter was indeed the letter
l .

Deciphering I works the same way: 8/3 isn’t a whole number, and neither is 34/3, but
60/3 = 20, so our plaintext is just the letter with character code 20, or u.

We could have saved a little work by changing division into an appropriate multipli-
cation. Just as with real numbers, to divide by 3 we can multiply by 1

3 , as long as we
interpret 1

3 correctly. As above, we have to find a number x so that

3x = 1(mod 26).

This number is 9, since 3 × 9 = 27 = 1 + 26. 9 is called the multiplicative inverse of 1,
modulo 26. When we are working modulo 26, division by 3 is the same as multiplication
by 9.

Now suppose we had tried a key of 4, and wanted to encrypt the name of our friend
bob . This has the numeric sequence 1,14,1, and after multiplying by 4, we have 4,56,4.
Since we are working mod 26, we must reduce 56 to 4, giving the ciphertext EEE. Some-
thing is fishy here— there is no way to know whether the E came from b or o. Why is 4
different from 3?

The issue is 4 and 26 share a common divisor, 2, while 3 and 26 are relatively prime.
When the key (4) and the size of the alphabet (26) are not relatively prime, there will be
different plaintext letters which correspond to the same ciphertext. In the example above,
we have

4× 1 = 4 and 4× 14 = 56 = 4 + (2× 26).

If any time we use key which is an even number, any two plaintext letters which have
character codes differing by 13 will encrypt to the same ciphertext, and so can’t be deci-
phered again.

Notice also that 4 does not have a multiplicative inverse mod 26, because the equation
4x = 1(mod 26) has no solution. To see this, notice that 4x must be an even number, but
if we add 1 to any multiple of 26, we get an odd number. So there can be no number x so
that 4x is of the form 1 + 26k.

There are two obvious ways to avoid this collision problem: don’t use keys which
share a common divisor with the length of the alphabet, or change the the alphabet so
that its length is a prime number. In our case, this is easily accomplished by adding some
punctuation to the alphabet (for example, adding a period, a comma, and and exclama-
tion mark), which would give us a 29-character alphabet. Or we could include the digits
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0–9, and a period. In order to be consistent with the what we’ve done before, however,
we’ll just avoid using even keys (or 13).

We can combine the cipher above with a Caesar cipher to get an affine cipher. That
is, our key consists of two numbers m and b, where m is relatively prime to the length of
the alphabet. Then to get the ciphertext for the letter with character code x, we compute
mx + b and reduce modulo the length of the alphabet (26 in our case).

As an example of an affine cipher, let’s encrypt the work blue using m = 3 and b = 20.
As before, we note that blue has character codes 1,11,20,4, which becomes 3,7,8,12 after
multiplying by 3 (and reducing/ mod 26). Now we add 20 to each one to get 23,27,28,32,
which reduces to 23,1,2,6 modulo 26. This gives the ciphertext XBCG.

To decrypt, we just reverse the process: subtract 20 from each, then multiply by 9 (the
inverse of 3), reducing modulo 26.

An affine cipher is just a specific case of the general substitution cipher we discussed
in section 2, and so it is readily broken using frequency analysis. Indeed, if you know a
message is encrypted with an affine cipher, you only need to determine what two letters
are to crack the encryption.

7 Twins and Triplets

Of course, one could increase the security of an an affine cipher using a different one on
each letter, as the Vigenère cipher discussed in section 4 does. But this is extra effort with
no payoff: such a cipher can be cracked by exactly the same methods, and it is more work
to encipher.

However, because an affine cipher sends adjacent letters far apart, one way to improve
the cipher is to work on multiple letters at a time, either in pairs, triplets, or larger group-
ings. Instead of assigning numbers to individual letters, we think of our message as made
up of “super-characters”, where each individual letter gives us one “digit” of the group.

For example, if we wanted our super-characters to be made up of pairs of two letters
(called a digraph), we would think of the plaintext double as being made up of the three
pairs of digraphs do , ub , and le . How many pairs of such digraphs do we have? Since
we have 26 choices for the first letter and 26 for the second, there are 26× 26 = 676 such
pairs. The first one is aa and gets assigned the number 0, ab gets 1, ac has the code 2,
and so on, up to zz which gets the character code 675. If the plaintext has an odd number
of characters, we add an additional character onto the end (usually x , q, or z ).

With so many digraphs, we certainly don’t want to have to use a table to look up the
numeric equivalences. But notice that we can readily figure out which letter pair gets
which number by paying attention to place value. Remember that when we write the
decimal number for six hundred seventy five, we write

675 = 6× 100 + 7× 10 + 5.
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Here, we don’t have ten “digits”, we have twenty-six.9 So to determine the code for do ,
we multiply the number for the single letter d by 26, and add the number for o. That is, it
has the numeric code 3× 26 + 14 = 92. Similarly, ub corresponds to 20× 26 + 1 = 521,
and le gives 290. To go from the number to its letter equivalent, we divide by 26; the
dividend gives the first character, and the remainder gives the second. For example, to
figure out the letters which correspond to 524, we divide 524 by 26. The result is 20, with
a remainder of 4, so 524 corresponds to ue .

Let’s encrypt the word blue using the same affine cipher as in section 6 (that is, with
m = 3 and b = 20), but working with digraphs.

plaintext bl ue
x 1× 26 + 11 = 37 20× 26 + 4 = 524

3x+20 131 1592 = 240 (mod 676)
131 = 5× 26 + 1 240 = 9× 26 + 6

ciphertext FB JG

Note that we can take m to be any number between 1 and 675 (as long as it is relatively
prime to 26), and we can take b as anything between 0 and 675.

To break such a code, we can apply frequency analysis, but this time we must look at
frequency of pairs of letters. This is still doable, but more challenging.

Notice that we can just as well use triplets of letters (trigraphs), or blocks of any length
we choose. For example, if we were using 4-tuples, the word blue would be a single
“character” and would have the numeric code

1× 263 + 11× 262 + 20× 26 + 4 = 25536.

However, such numbers quickly become unwieldy unless one is using a computer.

8 The Hill Cipher

Rather than working with such large numbers, the Hill cipher works on groups of letters
in a somewhat different manner. The Hill cipher works by viewing a group of letters
as a vector, and encryption is done by matrix multiplication. However, we will avoid
reference to linear algebra in our explanation.

The Hill cipher was first described by Lester Hill in a paper published in 1931. While
this cipher can work on blocks of letters of any length, we’ll describe it as working on
pairs of letters, or digraphs.

9 I suppose we could call these hexicosimal numbers (from the Greek for 26), but that’s too weird, so we
just say we are working in base 26.
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First, our key consists of four numbers which we call a, b, c, and d. These numbers
must be chosen so that the quantity ad− bc is relatively prime to the length of the alphabet
(26 in our case, so ad− bc cannot be even or a multiple of 13).

To encrypt a pair of letters, we look up their numeric equivalents as usual. Suppose
these numbers are x and y. Then the corresponding letters in the ciphertext are given by

(ax + by)mod 26 and (cx + dy)mod 26.

As an example, let’s encipher the phrase do it now using a Hill Cipher with the key
a = 2, b = 3, c = 5, and d = 6. Since ad− bc = −3 = 23(mod 26), this is a valid key. To
encode, we break our text up into pairs, and since there are an odd number of letters, we
add x to the end.

plaintext do it no wx
(3, 14) (8, 19) (13, 14) (22, 23)

(ax+by, (6 + 42 = 22 (16 + 57 = 21, (26 + 42 = 16, (44 + 69 = 9,
cx+dy) 15 + 84 = 21) 40 + 114 = 24) 65 + 84 = 19) 110 + 138 = 14

ciphertext WV VY QT JO

To decipher, we apply a different Hill cipher to the ciphertext. If the pairs of letters
have numeric equivalencies X and Y, then the plaintext is given by

(AX + BY) mod 26 and (CX + DY) mod 26.

To find A, B, C, and D, we first find the multiplicative inverse of ad− bc and denote it by
J. Then10

A = ( d× J) mod 26, B = (−b× J) mod 26

C = (−c× J) mod 26, D = ( a× J) mod 26

For example, if we encipher with a = 2, b = 3, c = 5, and d = 6 as above, then J = 17,
and the deciphering transformation has A = 24, B = 1, C = 19, and D = 8.

The real strength of the Hill cipher is that it can be adapted to work on large blocks of
text without having to use huge numbers as we did in the previous section. For example,
to work on blocks of 3 letters at a time, we choose 9 numbers a, b, c, d, e, f , g, h, k, and then
the code of the ciphertext corresponding to the triple (x, y, z) is

(ax + by + cz, dx + ey + f z, gx + hy + kz) mod 26.

Extending this to larger blocks of letters works analogously.

10 This formula comes from linear algebra. It is just the inverse of the matrix
(

a b
c d

)
.
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In attempting to crack a Hill cipher, the usefulness of frequency analysis becomes
vanishingly small as the size of the blocks of letters increases. A Hill cipher isn’t hard
to implement on groups of 6 or more letters. A major disadvantage, however, is that it
is quite susceptible to what is called a known plaintext attack. If part of the plaintext
is known to the attacker, then the deciphering transformation can be deduced merely by
solving some linear equations. Some help can be gained by applying a Vigenère cipher
after encrypting with a Hill cipher,11 although there are much better ways to improve the
security.

It is possible to build a machine that does all of the arithmetic corresponding to the
Hill cipher by means of gears and pulleys. Lester Hill and Louis Weisner were issued a
patent for a “Message Protector” which mechanically implemented a Hill cipher acting
on blocks of six letters at a time. The major gears in the machine correspond to a “number
circle” as discussed on page 5; multiplication is done by advancing the gear by a fixed
number of teeth several times (that is, repeated addition). The figure is taken from the
patent application (adapted from [Cdb]).

9 Adieu

In this note we’ve discussed just a few ideas related to cryptography. There are many oth-
ers, most of which use quite sophisticated mathematics. The National Security Agency,
which is the U.S. government agency dealing with cryptography, is reportedly also the
largest employer of mathematicians in the world. (We don’t really know, because they
keep this information secret!)

11If the length of the key for the Vigenère cipher is the same as the length of the letter-blocks, this yields
an affine cipher AX + B, where A is an n × n matrix, X is our vector of n plaintext letters, and B is the
n-vector corresponding to the Vigenère key.
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