MATH 515 Solutions to Midterm 1

5 pts. 1. (a) Give the definition of a **circle** with center *O* and radius *r*.

Solution: The circle with center *O* and radius *r* is the set of all points *P* in the plane for which |OP| = r.

5 pts.

(b) Give the definition of the **interior** of a triangle.

Solution: Let $\triangle ABC$ be a triangle. Then the interior of $\triangle ABC$ is the set of points *P* for which *P* is interior to $\angle ABC$ and also interior to $\angle BAC$.

5 pts. (c) Give the definition of the **altitude** of $\triangle ABC$ with base \overline{BC} .

Solution: The altitude is the segment \overline{AX} where X is a point on BC and \overline{AX} is perpendicular to \overline{BC} .

15 pts. 2. Given a segment \overline{BC} , what is the locus of points which are the vertex *A* of a triangle $\triangle ABC$ with base \overline{BC} and $\measuredangle B \ge \measuredangle C$?

Solution: Construct λ , the perpendicular bisector to \overline{BC} . Then the locus consists of the bisector λ together with all points on the same side of λ as *B* except for the points lying on \overleftrightarrow{BC} .

- If *A* lies on the line *BC*, it can *not* be in the locus, because points *A*, *B*, and *C* are collinear and do not form a triangle.
- If A lies on the bisector λ of BC (except for the midpoint M), then the resulting triangle ΔABC is isosceles. Thus, ∠B = ∠C, and A is in the locus (as shown by green ΔABC in the figure).
- If *A* lies on the same side of λ as *B* (but not on $\stackrel{\longleftrightarrow}{BC}$), then |AC| > |AB|, and so $\measuredangle B > \measuredangle C$. Thus *A* is in the locus (as shown by green $\triangle A'BC$).
- If *A* lies on the other side of λ from *B*, then |AC| < |AB|, and $\angle B < \angle C$. Thus *A* is *not* in the locus (as shown by blue $\triangle A''BC$).

15 pts. 3. Given $\triangle ABC$ with a point *O* in its interior, prove that |CO| + |BO| < |AC| + |AB|.

Solution:

First, extend \overline{CO} to meet \overline{AB} at D. Then apply the triangle inequality twice (to triangles $\triangle CAD$ and $\triangle ODB$).

$$|AC| + |AB| = |AC| + |AD| + |DB|$$

> $|CD| + |DB|$
= $|CO| + |OD| + |DB|$
> $|CO| + |OB|.$

15 pts. 4. Given a segments \overline{BC} and \overline{XY} , and an angle QRS, construct a triangle with base \overline{BC} , altitude congruent to \overline{XY} and $\angle B \cong \angle QRS$.

An animation of this construction can be found at http://www.math.sunysb.edu/~scott/ mat515.fall14/Geogebra/SegAngAlt_const.html, or here is the GeoGebra file.

Solution:

- 1. Erect a perpendicular to \overline{BC} at B.
- 2. Set the compass to |XY| and locate point Y' on this perpendicular with |BY'| = |XY|.
- 3. By erecting another perpendicular, construct a line parallel to \overline{BC} through Y'.
- 4. Draw a circle with center *R* and radius |RQ|; let *T* be the intersection with RS.

- 5. Set the compass to |RT| and construct the circle with center *B* and this radius. Denote the intersection of this circle and \overline{BC} by T'.
- 6. Set the compass to |TQ| and draw a circle with center T' and this radius. This circle intersects the circle drawn in step 4 at a point Q' on the same side of \overline{BC} as Y'.
- 7. Extend ray $\overrightarrow{BQ'}$ to meet the parallel drawn in step 3; call this intersection point A.
- 8. The desired triangle is $\triangle ABC$.

Proof: The altitude of the triangle $\triangle ABC$ is congruent to \overline{XY} since |BY'| = |XY| and AY' is parallel to \overrightarrow{BC} , as constructed in step 3. Since parallel lines are the same distance apart everywhere, the distance from A to \overline{BC} is the desired one.

Steps 4 through 6 construct an angle $\angle CBQ'$ which is congruent to $\angle SRQ$. We have this since $\triangle T'BQ' \cong \triangle TRQ$ by the **SSS** congruence. Specifically, since $\overline{BQ'}$, $\overline{BT'}$, \overline{RQ} , and \overline{RT} are radii of congruent circles, they are all of the same length; furthermore |T'Q'| = |TQ| as constructed in step 6.

Thus, $\triangle ABC$ has the desired properties.

15 pts. 5. On $\triangle ABC$, points D, E, and F are the midpoints of sides \overline{AB} , \overline{BC} , and \overline{AC} , respectively. ($\triangle DEF$ is called the *medial triangle*.) Prove that all four small triangles are congruent.

Solution: Once we show that $\overrightarrow{DF} \parallel \overrightarrow{BC}$ (and similarly for the other two sides of the central triangle), the rest is pretty straightforward.

First, extend \overline{DF} and locate *G* so that |DF| = |GD|. Then $\angle ADF \cong \angle BDG$, since they are vertical angles. Since *D* is the midpoint of \overline{BA} , we have |BD| = |DA|. Finally, |GD| = |DF| by construction. This means that $\triangle GDB \cong \triangle FDA$ by **SAS**.

Thus, $\angle G \cong \angle DFA$, which means $\overline{BG} \parallel \overline{AC}$ since the alternate interior angles are equal. Also, |BG| = |AF| = |FC|.

Now draw \overline{BF} and observe that by **SAS**, we have $\triangle BCF \cong \triangle FGB$ (since \overline{BF} is a transversal to paralells \overrightarrow{BG} and \overrightarrow{FC} , so $\measuredangle GBF = \measuredangle CFB$). Thus |GF| = |BC|, and the quadrilateral BGFC is a parallelogram, so $\overline{DF} \parallel \overline{BC}$.

In addition, since \overline{DF} is one half of \overline{GF} , we also have |DF| = |BE| = |EC|.

By an analogous argument, we have |DE| = |FC| = |AF| and |EF| = |BD| = |AD|.

Applying **SSS** several times, we obtain $\triangle ADF \cong \triangle DBE \cong \triangle FEC \cong EFD$.

Here is alternative proof, in case you didn't like that one.

Draw perpendiculars to \overrightarrow{BC} through points *D* and *F*, and construct a parallel to \overrightarrow{BC} through *A*. Call the intersection points of the perpendiculars with the parallel *L* and *R*, and let the intersection points with \overrightarrow{BC} be *M* and *S*.

Then we have $\triangle BDM \cong \triangle LDA$ by **hypoteneuseangle** (|BD| = |DA| by hypothesis, and we have vertical angles at *D*); similarly $\triangle ARF \cong \triangle CSF$.

Consequently, |LD| = |DM| = |RF| = |FS|, and so quadrilaterals *LRFD* and *MDFS* are congurent rectangles. In particular, $\overline{DF} \parallel \overline{BC}$.

A similar argument gives $\overline{AC} \parallel \overline{DE}$ and $\overline{AB} \parallel FE$. From this, we conclude that |DF| = |EC| = |BE|, |EF| = |BD| = |AD|, and |DE| = |AF| = |FC| (since opposite sides of parallelograms are of equal length).

Since all the corresponding sides agree, we have $\triangle ADF \cong \triangle DBE \cong \triangle FEC \cong EFD$ by **SSS**.

Other variations are certainly possible.