- (1) Suppose that A is a finite set with m elements, and B is a finite set with n elements.
 - (a) Find the total number of functions from A to B if
 - m = n
 - m > n
 - m < n
 - (b) Find the number of one-to-one functions from A to B if
 - m = n
 - m > n
 - $\bullet \ m < n$
- (2) Give an example of functions $f : A \to B$ and $g : B \to C$, (be sure to specify domains and ranges) for which
 - (a) g is onto C, but $g \circ f$ is not onto C.
 - (b) $g \circ f$ is onto C, but f is not onto B.
 - (c) g is one-to-one, but $g \circ f$ is not one-to-one.
 - (d) $g \circ f$ is one-to-one but g is not one-to-one.
- (3) Let $f : \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^2 + 1$. Find the following (remember that in this context [a, b] is the set $\{x \in \mathbb{R} \mid a \le x \le b\}$).
 - (a) f([1,2])(b) f([-1,2])(c) $f^{-1}([5,10])$ (d) $f^{-1}([-1,5] \cup [17,26])$
- (4) Let $f : A \to B$, and $D \subseteq A$, $E \subseteq B$. Prove that $D \subseteq f(f^{-1}(D))$. Also, Give an example where $D \neq f(f^{-1}(D))$.