- (1) Give a relation R from $A = \{5, 6, 7\}$ to $B = \{3, 4, 5\}$ such that
 - (a) R is not a function.
 - (b) R is a function from A to B, with the image of R equal to B.
 - (c) R is a function from A to B, with the image of R not equal to B.
 - (d) R is a function from A to B which is not one-to-one.
- (2) Explain why the functions

$$f(x) = \frac{9 - x^2}{x + 3}$$
 and $g(x) = 3 - x$

are not equal.

- (3) A metric on a set X is a function $d : X \times X \to \mathbb{R}$ so that for all x, y, and z in X, the following properties are satisfied:
 - $d(x,y) \ge 0$
 - d(x, y) = 0 if and only if x = y.
 - d(x,y) = d(y,x)
 - $d(x,y) + d(y,z) \ge d(x,z)$

Prove that each of the following is a metric for the indicated set.

the Euclidean metric: $X = \mathbb{R}$, $d(x, y) = \sqrt{(x - y)^2}$ the Manhattan metric: $X = \mathbb{R}^2$, d((x, y), (z, w)) = |x - z| + |y - w|the discrete metric: X is any set, d(x, y) = 0 whenever x = y, and d(x, y) = 1 if $x \neq y$.

(4) For each of the following, decide whether they are one-to-one and whether they are onto. Prove your answers.

(a)
$$f : \mathbb{N} \to \mathbb{N}, f(x) = 2x + 1$$

(b) $f : \mathbb{R} \to \mathbb{R}, f(x) = 2x + 1$
(c) $f : \mathbb{R} \to \mathbb{R}, f(x) = 2^x$
(d) $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}, f(x, y) = x - y$
(e) $f : (1, \infty) \to (1, \infty), f(x) = \frac{x}{x - 1}$

(5) Prove that if a real-valued function f is strictly increasing, then f is one-to-one. Also, give an example of a real-valued function g which is strictly increasing, but is not onto.