(1) Give a relation R from $A=\{5,6,7\}$ to $B=\{3,4,5\}$ such that
(a) R is not a function.
(b) R is a function from A to B, with the image of R equal to B.
(c) R is a function from A to B, with the image of R not equal to B.
(d) R is a function from A to B which is not one-to-one.
(2) Explain why the functions

$$
f(x)=\frac{9-x^{2}}{x+3} \quad \text { and } \quad g(x)=3-x
$$

are not equal.
(3) A metric on a set X is a function $d: X \times X \rightarrow \mathbb{R}$ so that for all x, y, and z in X, the following properties are satisfied:

- $d(x, y) \geq 0$
- $d(x, y)=0$ if and only if $x=y$.
- $d(x, y)=d(y, x)$
- $d(x, y)+d(y, z) \geq d(x, z)$

Prove that each of the following is a metric for the indicated set.
the Euclidean metric: $X=\mathbb{R}, d(x, y)=\sqrt{(x-y)^{2}}$
the Manhattan metric: $X=\mathbb{R}^{2}, d((x, y),(z, w))=|x-z|+|y-w|$
the discrete metric: X is any set, $d(x, y)=0$ whenever $x=y$, and $d(x, y)=1$ if $x \neq y$.
(4) For each of the following, decide whether they are one-to-one and whether they are onto. Prove your answers.
(a) $f: \mathbb{N} \rightarrow \mathbb{N}, f(x)=2 x+1$
(b) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=2 x+1$
(c) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=2^{x}$
(d) $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}, f(x, y)=x-y$
(e) $f:(1, \infty) \rightarrow(1, \infty), f(x)=\frac{x}{x-1}$
(5) Prove that if a real-valued function f is strictly increasing, then f is one-to-one. Also, give an example of a real-valued function g which is strictly increasing, but is not onto.

