- (1) Define the relation \trianglelefteq on $\mathbb{R} \times \mathbb{R}$ by $(a, b) \trianglelefteq (c, d)$ if and only if $a \le c$ and $b \le d$. Prove that this relation is a partial ordering on $\mathbb{R} \times \mathbb{R}$.
- (2) Let A be a partially ordered set, which we call the "alphabet". A "string" (or a "word") is a finite sequence of elements of A (written strung all together). Let W_A be the set of all strings made from elements of A. For example, if $A = \{a, b, c\}$, then a, abba, baccababa, and \emptyset are all elements of W_A , where \emptyset denotes the empty string which is of length zero.

If σ and τ are two strings in \mathcal{W}_A , then let $\sigma \smile \tau$ be the concatenation of σ and τ . For example, if σ is the string floo and τ is baru, then $\sigma \smile \tau$ is floobaru. Note that for any string $\sigma, \sigma \smile \emptyset = \sigma$.

Define the relation \ll on \mathcal{W}_A by $\sigma \ll \tau$ if and only if there is a string $\nu \in \mathcal{W}_A$ so that $\tau = \sigma \smile \nu$.

Prove that \ll is a partial order on W_A .

(3) Let R be the rectangle in the cartesian plane given by

 $R = \{(x, y) \mid 0 \le x \le 3, 0 \le y \le 1\}$

Let \mathcal{H} be the set of all rectangles whose sides have positive length, are parallel to the sides of R, and are contained in R. \mathcal{H} is partially ordered by set inclusion.

(a) Does every subset of \mathcal{H} have an upper bound? A least upper bound? (justify your answers).

(b) Does every subset of \mathcal{H} have a largest element?

(c) Does every subset of \mathcal{H} have a lower bound? A greatest lower bound?

(d) Does every subset of \mathcal{H} have an smallest element?