MAT511 homework, due Oct 29, 2003

(1) Define the relation \unlhd on $\mathbb{R} \times \mathbb{R}$ by $(a, b) \unlhd(c, d)$ if and only if $a \leq c$ and $b \leq d$. Prove that this relation is a partial ordering on $\mathbb{R} \times \mathbb{R}$.
(2) Let A be a partially ordered set, which we call the "alphabet". A "string" (or a "word") is a finite sequence of elements of A (written strung all together). Let \mathcal{W}_{A} be the set of all strings made from elements of A. For example, if $A=\{a, b, c\}$, then $a, a b b a, b a c c a b a b a$, and \emptyset are all elements of \mathcal{W}_{A}, where \emptyset denotes the empty string which is of length zero.

If σ and τ are two strings in \mathcal{W}_{A}, then let $\sigma \smile \tau$ be the concatenation of σ and τ. For example, if σ is the string floo and τ is baru, then $\sigma \smile \tau$ is floobaru. Note that for any string $\sigma, \sigma \smile \emptyset=\sigma$.

Define the relation \ll on \mathcal{W}_{A} by $\sigma \ll \tau$ if and only if there is a string $\nu \in \mathcal{W}_{A}$ so that $\tau=\sigma \smile$ ν.

Prove that \ll is a partial order on \mathcal{W}_{A}.
(3) Let R be the rectangle in the cartesian plane given by

$$
R=\{(x, y) \mid 0 \leq x \leq 3,0 \leq y \leq 1\}
$$

Let \mathcal{H} be the set of all rectangles whose sides have positive length, are parallel to the sides of R, and are contained in $R . \mathcal{H}$ is partially ordered by set inclusion.
(a) Does every subset of \mathcal{H} have an upper bound? A least upper bound? (justify your answers).
(b) Does every subset of \mathcal{H} have a largest element?
(c) Does every subset of \mathcal{H} have a lower bound? A greatest lower bound?
(d) Does every subset of \mathcal{H} have an smallest element?

