MAT511 homework,         due Oct 22, 2003


  1. Let $ A$ and $ B$ be nonempty sets. Prove that $ A\times B = B\times A$ if and only if $ A=B$. What if one of $ A$ or $ B$ is empty?

  2. For each of the relations below, indicate whether it is reflexive, symmetric, or transitive. Justify your answer.

    1. $ \le$ on the set $ {\mathbb{N}}$.
    2. $ \perp = \left\{{ (l,m) \,\,\vrule{}\,\,\mbox{$l$\ and $m$\ are lines, with $l$
perpendicular to $m$\ }}\right\}$.
    3. $ \sim$ on $ {\mathbb{R}}\times{\mathbb{R}}$, where $ (x,y) \sim (z,w)$ if $ x+z \le y+w$.
    4. $ \smile$ on $ {\mathbb{R}}\times{\mathbb{R}}$, where $ (x,y) \smile (z,w)$ if $ x+y \le z+w$.
    5. $ \square$ on $ {\mathbb{R}}\times{\mathbb{R}}$, where $ (x,y) \square (z,w)$ if $ x+z = y+w$.

  3. Prove that if $ R$ is a symmetric, transitive relation on a set $ A$, and the domain of $ R$ is $ A$, then $ R$ is reflexive on $ A$.

  4. Consider the relations $ \sim$ and $ \square$ on $ {\mathbb{N}}$ defined by $ x \sim y$ iff $ x+y$ is even, and $ x \square y$ iff $ x+y$ is a multiple of 3. Prove that $ \sim$ is an equivalence relation, and that $ \square$ is not.

  5. For each $ a \in {\mathbb{R}}$, let $ P_a = \left\{{(x,y) \in {\mathbb{R}}\times{\mathbb{R}}\,\,\vrule{}\,\,y = a - x^2}\right\}$.
    1. Sketch the graph of $ P_{-2}$, $ P_{0}$, and $ P_{1}$.
    2. Prove that $ \left\{{P_a \,\,\vrule{}\,\,a \in {\mathbb{R}}}\right\}$ forms a partition of $ {\mathbb{R}}\times{\mathbb{R}}$.
    3. Describe the equivalence relation associated with this partition.




Scott Sutherland 2003-10-17