MAT511 homework, due Oct 22, 2003

(1) Let A and B be nonempty sets. Prove that $A \times B=B \times A$ if and only if $A=B$. What if one of A or B is empty?
(2) For each of the relations below, indicate whether it is reflexive, symmetric, or transitive. Justify your answer.
(a) \leq on the set \mathbb{N}.
(b) $\perp=\{(l, m) \mid l$ and m are lines, with l perpendicular to $m\}$.
(c) \sim on $\mathbb{R} \times \mathbb{R}$, where $(x, y) \sim(z, w)$ if $x+z \leq y+w$.
(d) \smile on $\mathbb{R} \times \mathbb{R}$, where $(x, y) \smile(z, w)$ if $x+y \leq z+w$.
(e) \square on $\mathbb{R} \times \mathbb{R}$, where $(x, y) \square(z, w)$ if $x+z=y+w$.
(3) Prove that if R is a symmetric, transitive relation on a set A, and the domain of R is A, then R is reflexive on A.
(4) Consider the relations \sim and \square on \mathbb{N} defined by $x \sim y$ iff $x+y$ is even, and $x \square y$ iff $x+y$ is a multiple of 3 . Prove that \sim is an equivalence relation, and that \square is not.
(5) For each $a \in \mathbb{R}$, let $P_{a}=\left\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y=a-x^{2}\right\}$.
(a) Sketch the graph of P_{-2}, P_{0}, and P_{1}.
(b) Prove that $\left\{P_{a} \mid a \in \mathbb{R}\right\}$ forms a partition of $\mathbb{R} \times \mathbb{R}$.
(c) Describe the equivalence relation associated with this partition.

