MAT511 homework, Sept. 17, 2003

Let A, B, C be sets.
(1) Prove that $A \subseteq B$ if and only if $A-B=\emptyset$.
(2) Prove that $C \subseteq(A \cap B)$ if and only if $C \subseteq A$ and $C \subseteq B$.
(3) Prove that $\mathcal{P}(A \cap B)=\mathcal{P}(A) \cap \mathcal{P}(B)$. You may use the results above. (note that the earlier version of this problem had a typo. Sorry)
(4) Prove that $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.
(5) Give an example where $\mathcal{P}(A) \cup \mathcal{P}(B) \neq \mathcal{P}(A \cup B)$. What conditions are necessary on A and B to ensure that $\mathcal{P}(A) \cup \mathcal{P}(B)=\mathcal{P}(A \cup B)$?
(6) Show that there are no sets A and B for which $\mathcal{P}(A-B)=\mathcal{P}(A)-\mathcal{P}(B)$.
(7) Let \mathcal{A} be the family of all sets of integers containing 10 . What are the sets $\bigcup_{A \in \mathcal{A}} A$ and $\bigcap_{A \in \mathcal{A}} A$? Justify your answer.
(8) Let $A_{n}=\left[\frac{1}{n}, 2+\frac{1}{n}\right]$. What are the sets $\bigcup_{n \in(\mathbb{N}-\{1,2\})} A_{n}$ and $\bigcap_{n \in(\mathbb{N}-\{1,2\})} A_{n}$? Justify your answer.
(9) Let \mathcal{A} and \mathcal{B} be two pairwise disjoint families of sets. Let $\mathcal{C}=\mathcal{A} \cap \mathcal{B}$, and $\mathcal{D}=\mathcal{A} \cup \mathcal{B}$.
(a) Prove that \mathcal{C} is a pairwise disjoint family of sets.
(b) Give an example where \mathcal{D} is not a pairwise disjoint family of sets.
(c) Prove that if the sets $\bigcup_{A \in \mathcal{A}} A$ and $\bigcup_{B \in \mathcal{B}} B$ are disjoint, then \mathcal{D} is a pairwise disjoint family.

