Let A, B, C be sets.

- (1) Prove that $A \subseteq B$ if and only if $A B = \emptyset$.
- (2) Prove that $C \subseteq (A \cap B)$ if and only if $C \subseteq A$ and $C \subseteq B$.
- (3) Prove that $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$. You may use the results above. (note that the earlier version of this problem had a typo. Sorry)
- (4) Prove that $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.
- (5) Give an example where $\mathcal{P}(A) \cup \mathcal{P}(B) \neq \mathcal{P}(A \cup B)$. What conditions are necessary on A and B to ensure that $\mathcal{P}(A) \cup \mathcal{P}(B) = \mathcal{P}(A \cup B)$?
- (6) Show that there are no sets A and B for which $\mathcal{P}(A B) = \mathcal{P}(A) \mathcal{P}(B)$.
- (7) Let \mathcal{A} be the family of all sets of integers containing 10. What are the sets $\bigcup_{A \in \mathcal{A}} A$ and $\bigcap_{A \in \mathcal{A}} A$? Justify your answer.
- (8) Let $A_n = \left[\frac{1}{n}, 2 + \frac{1}{n}\right]$. What are the sets $\bigcup_{n \in (\mathbb{N} \{1,2\})} A_n$ and $\bigcap_{n \in (\mathbb{N} \{1,2\})} A_n$? Justify your answer.
- (9) Let \mathcal{A} and \mathcal{B} be two pairwise disjoint families of sets. Let $\mathcal{C} = \mathcal{A} \cap \mathcal{B}$, and $\mathcal{D} = \mathcal{A} \cup \mathcal{B}$. (a) Prove that \mathcal{C} is a pairwise disjoint family of sets.
 - (b) Give an example where \mathcal{D} is not a pairwise disjoint family of sets.
 - (c) Prove that if the sets $\bigcup_{A \in \mathcal{A}} A$ and $\bigcup_{B \in \mathcal{B}} B$ are disjoint, then \mathcal{D} is a pairwise disjoint family.