MAT511 homework, due Dec. 3, 2003

(1) Recall that in class (and in the handout copied from Eves; alternatively, a similar discussion can be found at http://www.shu.edu/projects/reals/logic/numbers.html), we considered the equivalence relation on $\mathbb{N} \times \mathbb{N}$ given by $(a, b) \sim(c, d)$ whenever $a+d=b+c$. We said that the set of equivalence classes corresponded to the integers \mathbb{Z}, where the each natural number n corresponds to equivalence class with elements of the form $(x+n, x)$ while negative integers correspond to classes of the form $(x, x+n)$.

Show that the relation \preceq given by $(a, b) \preceq(c, d) \Leftrightarrow a+d \leq b+c$ defines a total order on the equivalence classes, which corresponds to the usual notion of order on \mathbb{Z}. (Recall that a total order is a partial order in which all elements are comparable.)
(2) If (a, b) and (c, d) are representatives of two equivalence classes as above, we can define multiplication as $(a, b) \cdot(c, d)=(a d+b c, a c+b d)$. Remember that these are equivalence classes, so the statement $(2,1) \cdot(2,1)=(4,5)$ means $1 \cdot 1=1$.

Using this definition, show that if n and m are negative integers, $n \cdot m$ is a positive integer.
(3) We discussed how each real numbers corresponds to a Dedekind cut, or an infinite decimal that doesn't end in all 9 s . Let \mathcal{D} be the set of all real numbers greater than 0 and less than 1 which don't use the digits $1,3,5,7$, or 9 in their decimal expansion. Show that \mathcal{D} is an uncountable set.
(4) Let \mathcal{F} be the set of all functions from \mathbb{N} to $\{0,1\}$. What is the cardinality of \mathcal{F} ? Hint: You might find it conceptually easier to first think about the set \mathcal{F}_{10} of all functions from \mathbb{N} to $\{0,1,2, \ldots, 9\}$; \mathcal{F} and \mathcal{F}_{10} have the same cardinality.

