Christina Lueth

November 2nd, 2011

Midterm Solutions

1. Let X and Y be topological spaces, and let $f: X \to Y$ be continuous and surjective. Show that if X is connected, then Y must be connected.

If Y is not connected there exist two open, non empty sets A and B so that

- $A \cup B = Y$ $A \cap B = \emptyset$
- Since f is continuous $f^{-1}(A)$ and $f^{-1}(B)$ are open
- Also $f^{-1}(A) \cap f^{-1}(B) = \emptyset$ since f is a function (i.e. if $x \in f^{-1}(A) \cap f^{-1}(B)$ then $f(x) \in A$, $f(x) \in B$, but $A \cap B = \emptyset$)
- f⁻¹(A) ∪ f⁻¹(B) = X since f is surjective
 (i.e. every y ∈ Y has some x ∈ X so that f(x) = y such a y is in A or B since A ∪ B = Y)
- Also $f^{-1}(A) \neq \emptyset$ since $A \neq \emptyset$ and $f^{-1}(B) \neq \emptyset$ since $B \neq \emptyset$.

Therefore X is not connected.

- 2. Let M be the image of R^2 under $h: R^2 \to R^3$ given by $h(x, y) = (x^3, x^2, y)$
 - a) Calculate Dh.

$$Dh = \begin{pmatrix} 3x^2 & 0 \\ 2x & 0 \\ 0 & 1 \end{pmatrix}$$

b) What is the tangent space to M at (0, 0, 0)?

$$Dh_{(0,0,0)} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix} = R$$

c) What is the tangent space to M at (1, 1, 1)?

$$Dh_{(1,1,1)} = \begin{pmatrix} 3 & 0\\ 2 & 0\\ 0 & 1 \end{pmatrix} = R^2$$

d) Is M a smooth manifold? Justify your answer.No, M is not a smooth manifold because the derivative matrix is not of full rank at (0,0,0).

3. The set of all 2×2 matricies with real entries and determinant 1 is called $SL_2(R)$. Show that $SL_2(R)$ is a smooth 3-manifold by giving charts for it. Be sure to justify that your charts cover $SL_2(R)$ and that they are smooth.

[Note: We can show that $SL_2(R)$ is a manifold since det is a smooth function and $SL_2(R)$ is the preimage under det.]

$$M_{2} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} | a, b, c, d \in R \right\} \text{ is diffeomorphic to } R^{4}$$
$$\det \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) = 1 \text{ then } ad - bc = 1$$

Solve for b then $b = \frac{ad-1}{c}$ if $c \neq 0$

The chart for $c \neq 0$ from $R^3 \rightarrow SL_2(R)$ is

$$(a,c,d) \rightarrow \begin{pmatrix} a & \frac{ad-1}{c} \\ c & d \end{pmatrix}$$
 This chart is continuous and smooth.

The chart for $b \neq 0$

$$(a,b,d) \rightarrow \begin{pmatrix} a & b \\ \frac{ad-1}{b} & d \end{pmatrix}$$
 This chart is continuous and smooth.
If $b = 0$ and $c = 0$

$$(a,0,d) \rightarrow \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$$
 with $d = \frac{1}{a}$ and $a \neq 0$. This chart is continuous and smooth.

4. Consider the two disjoint, closed disks

$$D_1 = \{(x, y) \mid x^2 + y^2 \le 1\}$$
 and $D_2 = \{(x, y) \mid (x-4)^2 + y^2 \le 1\}$

Let $M = D_1 \cup D_2$.

Suppose $f: M \to M$ a smooth function. Show that f must have a period 2 point; that is, there must be a point $p \in M$ such that f(f(p)) = p.

Case I:

a) $f(D_1) \subset D_1$

For this case we ignore D_2 .

Apply Brouer's Fixed Point Theorem, then there exists p such that f(p) = p then f(f(p)) = f(p) = p

b) $f(D_2) \subset D_2$, then $p \in D_2$.

Case II: If neither Case I a) nor I b) hold, since f is continuous the following must hold

- $f(D_1) \subset D_2$ then $f(f(D_1)) \subset f(D_2) \subset D_1$ so $f^2: D_1 \to D_1$ There exists $p \in D_1$ with f(f(p)) = p
- $f(D_2) \subset D_1$ then $f(f(D_2)) \subset f(D_1) \subset D_2$ so $f^2: D_2 \to D_2$ There exists $p \in D_2$ with f(f(p)) = p