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We want to prove that, regardless of the size of the sphere, index at an
isolatex zero stays the same as long as the sphere contains only that one zero.
More generally, and this is what the book has, the “concept of index is invariant
under diffeomorphism of U .” We’re at §6 of the Milnor book.

We’re looking at the index of a vector field at an isolated zero. That is,
on our n-manifold M, given a vector field V : M → TM , we’re studying what
happens some z where V (z) = 0 and for a small enough neighborhood Dε(z),
only z has a zero vector. (That is, z is an isolated zero.)

Using any of those Dε neighborhoods described above, we may define the
index of V at z (denoted ı(V ; z)) as the degree from ∂Dε(z) → Sn−1 of the
normalized version of our vector field V . Since M is an n-manifold, ∂Dε

∼= Sn−1.
Thus, with a 2-manifold, the vector field maps a circle to a circle and we may
think of the degree as that on T2.

¡PIX: Mapping from circle to circle.¿
Recall: two maps are homotopic if there are no zeros between the spheres.

Suppose f : M → N is a smooth diffeomorphism, with vM being a vector field
on M , vN a vector field on N .

Definition. Two vector fields vM and vN are corresponding vector fields
under f when dfx takes vM (x) to vn(f(x)) for each x ∈ M . Thus, vN =
df ◦ vm ◦ f−1.

Let’s focus on some particular zero, z. Without loss of generality, z = 0
in any set U . We want to prove the following lemma: If V is a vector field,
and some open U has an isolated zero at z, and there’s a corresponding vector
field V ′ with and isloated zero z, then ı(V ′, z) = ı(V, f−1(z)). We’ll first prove
the more general lemma: any orientation-preserving diffeomorphism f of Rn is
smoothly isotopic to the identity.

Proof: WLOG, assume f(0) = 0. Since f is smooth, df0 : TM0 → TM0

exists, and df0 = limt→0
f(0+tx)−f(0)

t = limt→0
f(tx)

t . Recall that, since f is a
diffeomorphism of Rn, TM0

∼= Rn.

Define an isotopy F : Rn × [0, 1] → Rn by F (x, t) = f(xt)
t . Note that

F (x, 1) = f(x) and F (x, 0) = df0(x). So, f is homotopic to its derivative.
However, since f is a diffeomorphism, the df is homotopic to the identity because
df is isomorphic anywhere. Therefore, f is isotopic to the identity. The proof
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that it’s smoothly isotopic is in Milnor, page 34. Basically, we can break it down
into a bunch of smooth functions along the coordinates.

Now, we can prove the other lemma.
Homotopic vector fields from one sphere to another. We have two corre-

sponding vector fields v, v′ on two different open sets U,U ′. There is a smooth
f : U → U ′.

Case 1: f is orientation preserving. Define ft : U → Rn so that f0 = id
and f1 = f . We can do this because any orientation preserving diffeomorphis
m is smoothly isotopic to the identity. This means we can also define vt =
dft ◦ v ◦ f−1t . Then because f0 = id, v0 = v and because f1 = f, v1 = v′.
Moreover, those vector fields on vt are well defined and nonzero everywhere on
the sphere BECAUSE z IS AN ISOLATED ZERO! Hence, the index of v
at 0 must be equal to the index at v′ at 0.

Case 2: f is oreintation reserving. Let R be a reflection so that R ◦ f is
orientation preserving. Apply case 1. R doesn’t change the degree, so deg(R ◦
f) = deg(f). Thus we have proven that ı does not depend on the size of the
sphere, just the vector field and isolated zero.

Now we switch to Euler Characteristic. We need the sets of vertices and
edges to define a graph, which in turn will define the Euler Characteristic. On
some smooth 2-manifold M , the set of vertices is some V ⊆ M such that, for
each v ∈ V, there exists a neighborhood W so that V ∩W = {v} (i.e. each
vertex is isolated). Let γba : [0, 1] → M be a smooth, continuous function such
that γba(0) = a and γba(1) = b. We call the set of paths P = {γba : a, b ∈ M}.
Then our set of edges may be any E ⊆ P such that the paths only intersect at
the vertices (i.e. ∩E ⊆ V ).

A graph embedded on M is any two sets V,E that satisfy the above
qualities. A triangulation of M is any connected graph embedded on M such
that there exists a diffeomorphism between a finite union of disjoint open sets
in R2 and M − (V ∪ E). That is, if (V,E) is a triangulation, there exists some
F = {U : U ⊆ R2, U is open}, |F | = f,∩F = for some f ∈ N and there also
exists some diffeomorphism g : F →M − (V ∪ E).

The open sets in F chart to faces. We define χ(M) = |V |− |E|+ |F | for any
triangulation. We would like to prove that the triangulation does not matter.
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