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1 Fundamental Theorem of Algebra

(I). Consider the stereographic projection mapping h+ : S2 \ {(0, 0, 1)} −→ C.
This map h+ takes points in the northern hemisphere of the sphere to points in
the complex plane. The point (0, 0, 1) is the point at infinity; as we get closer
and closer to the this point h+ maps points in S2 to points in the plane near
infinity. Furthermore, it is clear that the map is bijective.

Figure 1: Stereographic Projection

(II). We define analogously the map h− that maps points from the southern
hemisphere onto the inside of the sphere. Notice that the point in the south
pole is mapped onto the origin of the plane; (0, 0,−1) −→ (0, 0) ∈ C by h−.

(III). We now need to find a map p that we can think of it as acting on the
sphere. consider the following diagram:

C P−−−−→ Cxh+

xh+

S2 p−−−−→ S2
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we see that P in the diagram corresponds to the map p, where p : x −→
h−1+ Ph+(x) excluding the north pole (0,0,1), but let p(0, 0, 1) = (0, 0, 1). This
map p is smooth even in a neighborhoud of (0,0,1). To see this, we set Q(z) =
h−ph

−1
− (z). Let now f = h+h

−1
− : C −→ C. Now, notice that f(reiϕ) =

(1/r)eiϕ. therefore, f maps z −→ 1/z

(IV). Now, if P (z) = a0z
n + a1z

n−1 + ...+ an (a0 6= 0), then we obtain that
Q(z) = zn/(a0 +a1z+ ...+anz

n). Therefore, Q is smooth in a neighborhoud of
0, and hence we have that p = h−1− Qh− is smooth in a neighborhoud of (0,0,1).

(V). Next notice that p has only a finite number of critical poins; for P fails
to be a local diffeomorphism only at zeros of the derivative P ′ = aonz

n−1 +
...+an−1, and there are only finitely many zeros since P ′ is not identically zero.
The set of regular values of p, being a sphere with finitely many points removed,
is therefore connected. Hence the locally function ]p−1(y) must be constant in
this set. Since ]p−1(y) cant be zero everywhere, we conclude that it is zero
nowhere. Thus p is surjective, and P (z) must have a zero, and we conclude the
proof of the fundamental theorem of algebra.

Note that this argument actually proves more: not only is there one zero,
there are at most n zeros, where n is the degree of p. We can see this as follows.

Look at the map Q(w) = wn/(a0 + a1w + . . .+ anw
n). For w close to zero,

Q(w) = wn + ε, where ε is a small complex number. For c some small complex
number which is a regular value of Q, Q(w) = c will have n distinct solutions,
each approximately equal to an n-th root of c. This tells us that ]Q−1(c) = n.
But this also tells us for y large, ]p−1(y) = n.

Putting this together with the previous gives us the stronger form of the
fundamental theorem of algebra: every complex polynomial of degree n has at
most n zeros.
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