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We’re still trying to prove that Fundamental Theorem of Algebra, and we
need a little bit more definitions.

Fundamental Theorem of Algebra 1. Every polynomial p : C → C has a
zero z ∈ C, p(z) = 0.

Last time, we were talking about Regular Values and Regular Points.

Definition 1. For any function f , a point x is a Regular Point if the deriva-
tive dfx is nonsingular. A point y is a Regular Value if all the points in the
pre-image f−1(y) are regular points.

Let us also define this operator: Ny = #f−1(y), that is, the cardinality of
that pre-image. This is sometimes called the local topological degree.

Proposition 1. If f : U → Rm is smooth and y ∈ Rm is a regular value
for f , then y 7→ Ny is constant on a neighborhood of y. (That is, it’s locally
constant).

For the below graph, the local topological degree is 3 at y = 2

y
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Notice that, if we move the line a little bit up or down, it still hits 3 points.
That’s what we mean when we say “locally constant.”

So, for an example of the above proposition, let’s look at g : z 7→ z3. For all
w ∈ C, w 6= 0, Nw = 3, but N0 = 1. Look at the below example, where w = −1.

After applying g−1, we get the graph below

So how do we prove this proposition? Let’s use the Inverse Function Theorem
(IFT)!

For f : R → R, the IFT says: if y is a regular value, then there is a
neighborhood W of x so that f has an inverse on that neighborhood, or f :
W → R is invertible.

Let’s have f(x1) = y. By IFT, there’s a neighborhood V1(y) so that f−1
1 :

V1 → R is defined and f−1
1 (y) = x1. Let’s have a set Bob = {xi : f(xi) = y},

so Ny = Bob. We have V1, V2, V3, . . . and for each xi ∈ Bob. Let V = ∩Vi.
So, we have f−1

1 , f−1
2 , f−1

3 , . . . all defined on V . That means that Ny is locally
constant. Check out page 8 of the Milnor for more on the exciting world of
Regular Points and Regular Values.

We need one more concept in order to prove the FTA. We need to understand
connectedness.

Definition 2. A set S is connected if, whenever S is divided into two non-
empty dis joint sets so that

S = A ∪B,A 6= ∅, B 6= ∅, A ∩B = ∅,

either A or B contains a limit point of the other. (Equivalently, it’s impossible
to find two non-empty open sets A,B ⊆ S so that A ∩B = ∅, A ∪B = S.)

A path is the image of a continuous function γ : [0, 1]→ A. (We will refer
to γ as either a function or the image of that funtion. I will attempt to do so
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unambiguously.) A set A is path-connected if, for each x, y ∈ A, there exists a
path γ such that γ(0) = x, γ(1) = y, and Image(γ) ⊆ A. As a little proposition,
if something’s path connected, it is also connected (This is homework problem
1a; I give you two definitions of connected to help out with the proof.)

For our purposes, we’ll use the ideas of path and path connected, but not
connected. The above definition of “connected” can be found in the Kinsey book
“Topology of Surfaces,” although its equivalent reformulation was discussed in
class. I recommend mulling it over, drawing a couple pictures to see how that
kind of connectedness works.

Speaking of pictures, consider this pretty picture. Let G1 = {(x, sin( 1
x ))}

and let G2 = {(0, y) : −1 ≤ y ≤ 1}, and let G = G1 ∪G2.

We can see that, clearly, G1 and G2 are path connected. However, G is not,
because we can’t bridge that infinitely small gap between sin 1

x and the y-axis.
That being said, this graph is connected. Recall the definition of connected
says that the two sets make up G (and they do by definition), they’re both
non-empty, and their intersection is empty, but the limit points of either set are
in one or the other. This is correct, as all the interior points are in G1, and its
frontier points at the y-axis are in G2. The second definition doesn’t really help
much in this situation, but it might in others.

Let’s get back to polynomials. The polynomial p : C→ C has degree d. We
want to prove that it has at most d− 1 critical points. Let z be a zero of p. We
draw in the complex plane:

z
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After applying the polynomial to those points, we get:

p(z)

Here’s the proof that it has at most d−1 critical points. Either 0 is a regular
value or not. If it’s not, then there’s a critical point c so that p(c) = 0. Done,
that’s a zero. Otherwise, if 0 is a regular value, since there are d − 1 critical
values, we can find x0, y0 ∈ C so that y0 6= 0, f(x0) = y0. Let’s take out those
critical points from the complex plane; it’ll still be path connected. So, connect
y0 to 0 by a path γ(t), avoiding those critical value chasms. #p−1 is locally
constant along this path γ(t). (This is called Analytic Continuation).

Notice that p : C → C is onto. Well, that’s about it for this set of notes.
However, one last theorem: Sard’s Theorem:

Sard’s Theorem 1. If we have f : M → N , with f smooth, C = { critical
points of f}, then f(C) has measure 0. That is to say, for all ε > 0, there exist
countably many disks Dε ⊆ N that covers f(C), their union having an area < δ
for any δ > 0.

This means that, if we look at the image of our critical points, they’ll end
up like a dot on a line or a line in a plane or a plane in space. They won’t
have that “length” or “area” or “volume” concept defined on the space they are
contained within.
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