1. Show that \(A = \{(x, y) \mid 1 < x^2 + y^2 < 2\} \) and \(B = \mathbb{R}^2 \setminus \{(0, 0)\} \) are diffeomorphic.

More specifically, construct an explicit map \(f : B \to A \) and show that

- \(f \) is a continuous bijection
- \(Df \) is nonsingular everywhere (calculate \(Df \) and show that the determinant is nonzero for all \((x, y) \in B \)).
- \(Df^{-1} \) is nonsingular (explicitly find \(f^{-1} : A \to B \) and calculate \(Df^{-1} \), then show the determinant is nonzero).

2. Give an explicit example (that is, write down a parameterization) of a function \(g : \mathbb{R}^2 \to \mathbb{R}^3 \) for which

- \(g \) is injective
- \(Dg(0, 0) \) has rank 0
- the rank of \(Dg(x, y) \) is 2 at all \((x, y) \neq (0, 0) \).

3. Let \(M \) be the image of \(\mathbb{R}^2 \) under the map \(h : \mathbb{R}^2 \to \mathbb{R}^3 \) given by \(h(x, y) = (x^3, x^2, y) \).

 (a) Does \(h^{-1} : M \to \mathbb{R}^2 \) exist?
 (b) What is the tangent space to \(M \) at \((0, 0, 0) \)?
 (c) What is the tangent space to \(M \) at \((1, 1, 1) \)?
 (d) Is \(M \) a smooth manifold?