MAT364, Homework 1

due wednesday 9/14

1. Recall that for a set A in \mathbb{R}^n , its closure is the union of its interior points and those in its frontier, that is

$$\operatorname{Cl}(A) = \operatorname{Int}(A) \cup \operatorname{Fr}(A).$$

Prove for any such A, Cl(A) is a closed set.

2. Suppose x and y are points in \mathbb{R}^n . The closed line segment between x and y is defined as

$$[x, y] = \{tx + (1 - t)y \mid 0 \le t \le 1\}.$$

A subset $A \subset \mathbb{R}^n$ is called **convex** if for every x and y in A, every point of the segment [x, y] is also contained in A.

Prove that if x_0 is any point in \mathbb{R}^n , the open disk $D_r(x_0)$ and the closed ball $B_r(x_0)$ are both convex sets.

- 3. Give an example of a countably infinite family of closed sets A_1, A_2, A_3, \ldots such that $\bigcup_{i=1}^{n} A_i$ is not closed.
- 4. True or False: "If A and $A \cup B$ are open, then B must be open. If true, give a proof. If false, give a counterexample.
- 5. Consider the real line \mathbb{R} as the *x*-axis in \mathbb{R}^2 . If *B* is a closed subset of \mathbb{R} , prove that it is also closed when viewed as a subset of \mathbb{R}^2 .

Is the same property true for open sets? That is, if A is an open subset of \mathbb{R} , is A also open when viewed as a subset of \mathbb{R}^2 ? Prove or give a counterexample.