1. Recall that for a set A in \mathbb{R}^n, its closure is the union of its interior points and those in its frontier, that is

$$\text{Cl}(A) = \text{Int}(A) \cup \text{Fr}(A).$$

Prove for any such A, $\text{Cl}(A)$ is a closed set.

2. Suppose x and y are points in \mathbb{R}^n. The closed line segment between x and y is defined as

$$[x, y] = \{tx + (1-t)y \mid 0 \leq t \leq 1\}.$$

A subset $A \subseteq \mathbb{R}^n$ is called convex if for every x and y in A, every point of the segment $[x, y]$ is also contained in A.

Prove that if x_0 is any point in \mathbb{R}^n, the open disk $D_r(x_0)$ and the closed ball $B_r(x_0)$ are both convex sets.

3. Give an example of a countably infinite family of closed sets A_1, A_2, A_3, \ldots such that $\bigcup_{i=1}^{\infty} A_i$ is not closed.

4. True or False: “If A and $A \cup B$ are open, then B must be open. If true, give a proof. If false, give a counterexample.

5. Consider the real line \mathbb{R} as the x-axis in \mathbb{R}^2. If B is a closed subset of \mathbb{R}, prove that it is also closed when viewed as a subset of \mathbb{R}^2.

Is the same property true for open sets? That is, if A is an open subset of \mathbb{R}, is A also open when viewed as a subset of \mathbb{R}^2? Prove or give a counterexample.