
MAT331 Exercises, Spring 14 set number 10

31. (expires 4/17) When we implemented RSA in class, we represented our encrypted mes-
sages as a list of large numbers, rather than converting them to printable text. Sometimes
we want a text representation. One way to do this to use a base-64 representation, where
the message m is converted to a base 64 number. This base 64 number is commonly rep-
resented with the upper-case characters A–Z representing digits 0 through 25, lower-case
a–z representing digits 26 through 51, the characters 0–9 representing 52 through 61, and
+ and / representing 62 and 63, respectively.

If the message is longer than 64 characters, the encoded line is broken there (i.e., a newline
is inserted). In some implementations, padding characters (usually =) are also added to
ensure that the encoded text is of a length divisible by 4 (if the input is base 256 ASCII, this
means three input characters correspond to four encoded characters). There are several
variations of the base-64 encoding in common use.

Write a generalized implementation of this conversion process. Specifically, assume there
is a global called AlphabetOut which contains the allowed characters in the encoding,
ordered appropriately. Your procedure should take as input two arguments: a list of num-
bers in base n, and the base n. Your procedure should return a string representing the
message in base b, where b is the length of AlphabetOut. Also write another procedure
which undoes this conversion. Don’t worry about inserting padding characters.

As an example2, the following list of numbers represents some text converted from ASCII
(base 256) to base 1047 (that is, without encryption):

6669013858395040150291124122141963456189571137, 79085785195062207278272120198122975492318184082,
15624867350544934942834543866565863795868490456, 55387683611779270304689525842891535523935500393,
23896957611465431133603100420167106476881540779, 78091587231828327640146863695263953922927490912,
9764606424846784132731915166644883269708742761, 24147181471923289394456210178528341598920602555,
59677642432524170063171614096094265077340147036, 101708358765089971113312874866

When transcribed into the base 64 encoding described above, we get:

BBCbv52ZgQXatVGIhd2bsASauBSYgcWYsFGe5BiZhJHLgYWYyBSY3FWeu4iLKoQS

0BSazBSYgAXZyl2bkBybmByYpZXasBydhJnLgIVZiVGbgowcwF2YlNHapB3csAyc

0JXarlmbnBiZy9WbgEGIolGZkVmbgogYhNXZsACahZXZgc3buBCdoVWayBiZpJ3c

0BidpNGdvJXegoQYnFWauNHdgQHalBSZ2lGbgcUYsF2Y0l2YgUUbwlmcl5C

By the way, this text is from the opening to a well-known movie.

32. (expires 4/17) The procedures StringToKgraph and KgraphToString as defined in
Crypto.mw have the following defect. Let α represent the first character of the Alphabet.
Then any occurences of α that appear at the end of a string are lost when converting to
k-graphs and back.

For this problem, you should think of a way to fix this issue. You need to both implement
and explain your solution.

As a concrete example, suppose we use the 10-letter alphabet *123456789. Then the com-
mand StringToKgraph("*12***98*456****",3) gives the result [210, 0, 89,
654], which KgraphToString converts back to *12**98*456.

There are a number of ways to solve this issue. Think of one, implement it, and explain
why your way works, including some examples.

2Using Maple’s convention of least-significant digit first, so the decimal number 123 is [59,1] (or 7B) in base 64.

http://www.math.sunysb.edu/~scott/mat331.spr14/problems/lotsanums.txt
http://www.math.sunysb.edu/~scott/mat331.spr14/problems/catMWS.php?file=Crypto.mw

