
MAT331 Exercises, Fall 2019 set number 10

36. (expires 12/4) The difficulty of breaking a cipher can be increased by inserting some random
characters (or noise) into a known part of the plain text in such a way that it will interact with the
actual text (sometimes this insertion of randomness is called “salting the plaintext”).
As an example of this, recall that we discussed (on Nov. 21) that if our character set came from an
alphabet of length n, we could represent blocks of k-characters as numbers base nk (for example, in
the 53-character alphabet consisting of a space, upper-case letters A-Z, and lower-case letters a-z,
the word Hi is represented by 8 + 35 · 53 = 1863 if we use 2-character blocks).
If we agree that the first character of each block will be randomly chosen (and just removed after we
decrypt), breaking the encryption becomes much, much harder. Indeed, the difficulty decreases by
a factor of the number of possible salt characters.
Modify the encryption scheme in Affine from Crypto.mw so that it can encrypt and decrypt includ-
ing salt as the first character of each block. You may either make a new procedure SaltedAffine
or modify Affine to accept an optional parameter to insert (and remove) the salt, as you see fit.
As an explicit example, let us encode the string Zombie Apocalypse using the 53-character al-
phabet and 3-character blocks (where the first character of each block is randomly chosen from the
Alphabet). In this example, the given string corresponds to the list of character codes

[26, 41, 39, 28, 35, 31, 0, 1, 42, 41, 29, 27, 38, 51, 42, 45, 31]

which, when grouped into pairs and with a random character added as salt, gives

[116551, 80721, 88936, 2842, 117404, 77428, 145275, 128676, 1652]

(your numbers may differ by up to 53 because of the salt); viewing these as 3-graphs including
the salt, corresponds to DZoBmbBieg AIpovcaBlyspsIe. If we then encrypt this using the affine
encryption x 7→ 12347x + 56890 mod 533, we get

[67005, 136439, 32930, 12092, 28729, 121189, 97219, 4118, 57985]

or MsWQdvQlKHPDCLJeGqQfhkXAChT (unless you used the same salt, your encryption will differ
significantly, but both should decrypt just fine.)

If you were able to make this work, you should be able to decrypt the string1
MWLiuWVckaMOpfHuWPgGuWlyQovqkwBwWV nLZYhrySYihTUSFqFJuGxEtvxCWNxPxstkPwkkxo

which was encrypted using salted pairs (that is, 3-character blocks including salt) from the 53-
character alphabet above, and applying the affine mapping x 7→ 47x + 31415 mod 533. Decrypt
the phrase.

1also available as zombiecrypt.txt so you don’t have to worry about typing errors.

https://en.wikipedia.org/wiki/Salt_(cryptography)
http://www.math.stonybrook.edu/~scott/mat331.fall19/daily/#2019-11-21
http://www.math.stonybrook.edu/~scott/mat331.fall19/daily/extras/catMWS.php?file=Crypto.mw
http://www.math.stonybrook.edu/~scott/mat331.fall19/problems/zombiecrypt.txt

