
> >

> >

(1)(1)
> >

> >

> >

> >

2019-12-05 ... Last Class :-(or maybe :-p or ;-). depends on you.?
Maple has a page about RSA built in. See

Continuing from last time, let's actually write maple procedure that does RSA encryption.
As usual, want to steal StringToList, ListToString from Crypto.mw

StringToList, ListToString

S t r i n g T o L i s t converts a string into a list of numbers representing the position of each character
in the A lphabet.
L i s t T o S t r i n g converts such a list back into a text string.

Note that this differs from what we did in class on Nov 12 and 14, in that Alphabet[n] is represented
by n-1. This will be more convenient.
These routines have been revised to allow for specification of an alternative base, as on Nov.21's
class, but the changes are backward compatible. Also ignores characters not found in the Alphabet,
issuing a warning. This behavior is controlled by a switch keepbad (default: false)

S t r i n g T o L i s t : = p r o c (s t r : : s t r i n g , { b a s e : : p o s i n t : = 1 } ,
{keepbad: : t rue fa lse := fa lse})
 l o c a l n u m l i s t ;
 g l o b a l A l p h a b e t ;
 numl is t :=map(s ->SearchText (s ,Alphabet) -1 , Explode(st r)) ;
 i f (n o t (k e e p b a d)) t h e n
 numl is t := remove(x ->x<0 ,numl is t) ;
 i f (n o p s (n u m l i s t) < l e n g t h (s t r)) t h e n
 WARNING("%1 characters have been ignored because they
don ' t occur in the A lphabe t" , l eng th (s t r) -nops (numl is t)) ;
 f i ;
 f i ;
 i f (b a s e > 1) t h e n
 n u m l i s t : = c o n v e r t (n u m l i s t , ' : - b a s e ' , l e n g t h (A l p h a b e t) ,
base) ;
 f i ;
 r e t u r n (n u m l i s t) ;
end:
L is tToStr ing:=proc(nums: : l is t (nonnegint) , {base: :posint :=1})
 l o c a l n u m l i s t ;
 g l o b a l A l p h a b e t ;
 i f (b a s e > 1) t h e n
 n u m l i s t : = c o n v e r t (n u m s , ' : - b a s e ' , b a s e , l e n g t h (A l p h a b e t)) ;
 e l s e
 n u m l i s t : = n u m s ;
 f i ;
 re turn(Implode(map(k->Alphabet [k+1] ,numl is t))) ;
end:

> >

> >

(2)(2)

> >

> >

(5)(5)

> >

(6)(6)
> >

(4)(4)

> >

(3)(3)

Let's make RSA go, with 100-digit or so primes. We'll do this first "by hand", then write a general
purpose procedure to do it.

RSA relies on the fact that factoring the product of two big primes is computationally hard. With
current technology, 150-600 digit primes is considered safe.

How can we get a big prime? Maple has a nex tp r ime function that gives the next prime bigger than
something, so

100\
000000000000000000000267

is the first prime bigger than that is, the smallest 101-digit prime.

So to get a 100-digit prime, we generate a random 100-digit number, and take the next prime bigger.
We might as well a Blum-Blum-Shub generator, since it is a cryptographically secure random number
generator.

30377124371726666464582043148101155151709419296032239642603151061097241955758\
81673391517010513162324

43337745069224282727095779078959190670767279546685307309200103335839457358873\
20424645664157371173623

We also need a random exponent, but it doesn't need to be prime, only relatively prime to phi(n). So,

> >

> >

(7)(7)

(10)(10)

> >

(9)(9)

(8)(8)

> >

> >

> >

(11)(11)

let's generate a random number, and check if it is relatively prime to phiN. If not, try again.

2

1

Note that we could do the reverse: Pick a, and then if it isn't relatively prime to phi(n), pick a new p,q
pair. Either way is fine.

Now let's compute the decryption exponent.

Let's just confirm it works with a test case.

Since our numbers are big (maybe hundreds of digits), it is crazy inefficient to compute and then
reduce Instead, we reduce mod n as we calculate the powers. Maple knows how to do this, but
we have to give it a hint that we want it to do this way, using the "inert form" of exponentiation &^
instead of just ^ . This can't be entered in the regular "math mode" input, so we have to use "maple
mode" (control-M)

crypt:= 123456789 &^a mod n;
decrypt:= crypt &^d mod n;

It seems to work.
Now let's write some proc to give us a public and private key.
We can allow specifying the number of digits for the primes and the encryption key, with a default
value if omitted.

MakeRSAkeys:=proc(primesize::posint:=100, keysize::posint:=15)
 with(RandomTools):
 l o c a l p , q , r a n d o 1 , r a n d o 2 , n , a , d , p h i N ;
 rando1 := BlumBlumShub:-NewGenerator(range = 10^(primesize-1) .
. 10^pr imes ize) ;
 rando2 := BlumBlumShub:-NewGenerator(range = 10^(keysize-1) . .
10^keysize) ;
 p := nextpr ime(rando1()) ; # generate pr imes
 q := nex tp r ime(rando1 ()) ;
 n : = p * q ;
 p h i N : = (p - 1) * (q - 1) ; # o r l c m (p - 1 , q - 1) i s O K , t o o
 a : = r a n d o 2 () ;

> >

(14)(14)

(13)(13)

> >

> >

> >

(12)(12)

> >

 # m a k e s u r e a i s o k ; i f n o t , k e e p t r y i n g
 wh i le gcd (a ,ph iN)> 1 do
 W A R N I N G (" T r i e d % 1 f o r a , n o g o o d . " , a) ; # d o n ' t n e e d t h i s ,
but why not?
 a : = r a n d o 2 () ;
 o d ;
 d :=1 /a mod phiN;
 r e t u r n ([n , a] , [n , d]) ;
end:

Warn ing , T r ied 660852372526504 fo r a , no good .

to encrypt:
1) convert your message to numbers less than n.
2) compute on each number.

If we are using base n for our message, we can convert our string to blocks of rather large numbers.
We can fit about 100 characters into a single numeric block.

Have to tell maple to compute powers in modular arithmetic (ie, reducing as you go) rather than power
first, or you'll get an overflow.

crypt:= map(x-> x &^ a mod n, nums)

(15)(15)

(19)(19)
> >

> >

> >

> >

> >

(14)(14)

> >

> >
(17)(17)

(16)(16)

> >
(18)(18)

decrypt:= map(x-> x &^ d mod n, crypt)

ListToStr ing(%, base=n-1)
"Who put the benzedrine in Mrs. Murphy's ovaltine? Sure was a shame, don't know who's to

blame, she didn't even get his name."

d o R S A : = p r o c (n u m l i s t : : l i s t , k e y p a i r : : l i s t)
 l o c a l n , a ;
 a : = k e y p a i r [2] ;
 n : = k e y p a i r [1] ;
 re turn (map(x -> x &^ a mod n , numl is t)) ;
end:

We can represent our string in any base we want, as long as it is less than n. Here n is about 10^200.
e v a l f (l o g [1 0] (n)) ;

199.1134625

Ok, so it is a bit bigger than 10^199.
c r y : =
d o R S A (S t r i n g T o L i s t (" T h i s i s a t e s t . T h i s i s o n l y a t e s t . I f
this were a real emergency, you would be dead by now so who
cares?", base=10^50) , pub):
ListToString(cry,base=10^50)

"3{I_G$#O i6_NKGj0@[6'BXWXsg 0j]ga*!=V.7\,xrO1.R)F||j#p5!
! XANkR&uu9bx|FDezk7D})L\~h"y! nCD{*VFwlC 2v@zPqO-eUjOq_ypHMm0b$kC
a3ykTC m2p$(C)psl,gZ7OA/h65-SLHah9sF#sz_gN.Q_an|po:iUt7Es! @H"2`NNdI! R8-
kSC v4ZAOO/G0"

c r y

(19)(19)

> >

(24)(24)

> >

> >

(20)(20)

> >

(14)(14)

(23)(23)
> >

(21)(21)

(22)(22)

> >

"This is a test. This is only a test. If this were a real emergency, you would be dead by now so
who cares?"

Let's try again with a base of 10^199. Still should work.
cry2:=
d o R S A (S t r i n g T o L i s t (" T h i s i s a t e s t . T h i s i s o n l y a t e s t . I f
this were a real emergency, you would be dead by now so who
cares?", base=10^199), pub):

ListToString(doRSA(cry2,priv) , base=10^199)
"This is a test. This is only a test. If this were a real emergency, you would be dead by now so

who cares?"

But this will break if we use too big of a base (remember, 10^199 < n < 10^200) :
c r y 3 : = doRSA(
 S t r i n g T o L i s t (" T h i s i s a t e s t . T h i s i s o n l y a t e s t . I f t h i s
were a real emergency, you would be dead by now so who cares?",
base=10^200),
 p u b) :

ListToStr ing(doRSA(cry3,priv) , base=10^200)
"-GtGVLru/DQ]o%JRl7qt^?RJNp|*-9.Ru:uY3U/!s\#82~UdHr4]~:j~|[C}8#jrvQrGC]4.K]

eH~pdwqa|DuI!~02_@?'C RFS! #w~bares?"

One other thing discussed here is that RSA can be used to digitally sign a message.

That is, assume my public key is (n,a) and my private key is (n,d). My public key needs to be
obtainable publically, for example, on my web page.

Suppose I want to send you a message (not encrypted, in the clear), but signed so that you know it was
really from me and not forged. I could, of course, just encrypt the whole message with my private key,
and anyone (including you) could decrypt it. Since I am the only person who can encrypt that message
(since I am the only one who knows d), you know it came from me. But maybe I want the message to
be readable by anyone, and those that want to know wasn't forged can decrypt a shorter message to
check.

This leads to the idea of a cryptographic hash function (most common are MD5 and SHA ... MD5 is
quite common, but was cracked in about 2010; SHA is its replacement)..... the has function gives a
string that changes if even one bit of its input is changed, and figuring out two messages with the same
hash is believed to be computationally impossible. (if we don't specify the method, we get MD5)

Hash("this and that",method=sha1)
"4f813651453b11db74cbc36ccddea13f109e8412"

Hash("This and that",method=sha1)
"e4edcc5d05086e6a667096fcb9d19681ddf0d773"

(19)(19)

> >

(14)(14)

> >
So, to sign a message, I can compute the hash of the message and RSA encrypt that with my private
key, then include that with the message as a digital signature.
If you want to check that I sent it and it wasn't tampered with, you can use my public key to decrypt the
signature, and compare it to the hash of the message. If the two agree, I sent it and it wasn't tampered
with. If they disagree, it was tampered with or I didn't send it.

Of course, you need to be sure it is MY public key, and not the key of some forger.

OK, that's it for this semester of MAT331. I hope you got something out of it.
Please do your course evaluations, especially the comment section.

