
(5)(5)

> >

(2)(2)

> >

> >

> >

(4)(4)

(6)(6)

(1)(1)

> >

(9)(9)

> >

(7)(7)

> >

> >

(3)(3)

> >

(8)(8)

2019-12-03 Public key encryption
idea behind RSA is that factoring is hard.
But checking primes is easy.

false

Don't ask maple to factor if you do, be prepared to wait a
LOOOOONG time.

false

true

Observe that the time needed to factor was way longer than the
time needed to check if it was prime.
This is because primaility testing is easy, but factoring is hard.

We know that in integers mod n, if gcd(k,n)=1, then k is invertible mod n.

RSA (and its friends) rely on computing and being able to invert it.

if n is prime, everything is good, that is everything in [0,1,2,3,....,n-1] has an inverse
mod n, and powers are all invertible.

What if n = p*q, both p and q prime? want to find power so that has an
inverse for all x <n
This works for some powers, not for others.

Fermat's little theorem says that for p prime, any 0< we have

1

what if we do this with n, with n=p*q?
Let's just try some.

> >

(14)(14)

(10)(10)

(12)(12)

> >

> >

> >

(15)(15)

(13)(13)

> >

> >

(11)(11)

> >

So raising to n-1 power and reducing mod n doesn't work. But as we know, it works
with a prime.

Euler's theorem: for n=p*q with p,q prime any 0< we have
where phi=(p-1)*(q-1).

Phi(n) is called "Euler's Totient function". For a prime p, phi(p)=p-1. For a product
of two primes p and q,
Phi(n) is (p-1)*(q-1). For more complicated composites n , phi(n) is more
complicated, but that is irrelevant for us here.

2002

2003

2474472

2474472

The idea of RSA is that factoring is hard and so computing phi(n) is hard if we just
know n, not its factorization.
Here's how to do it:

1) Choose 2 primes p and q Let n=p*q.
(in practice, p and q need to be about 150 digits long, maybe more. These days, RSA
uses primes whose product is 1024, 2048, or 4096 bits, so p and q are between 150
and 600 decimal digits long. We will use shorter ones).
2) Choose exponent a with gcd(a,phi(n)) = 1 (a=3 is pretty common, but whatever
makes you happy.)
3) public key is (n, a)

4) let d=1/a mod phi.
5) private key is (n, d)

To encrypt, represent your message as a list of numbers < n
for each number x, encryption is

(21)(21)

> >

(22)(22)

> >

> >

> >

(19)(19)

> >

> >
(16)(16)

> >

(25)(25)

> >

(17)(17)

(10)(10)
> >

(18)(18)

(24)(24)

(20)(20)

> >

> >

> >

(26)(26)

(23)(23)

to decrypt y, compute
why?

since d=1/a mod phi, d*a = 1 mod phi, so d*a = 1+ k *phi

Write [x] for x mod n,, so and remember that by Euler

so our public key is the pair (n,a) = (187, 11)

In fact, all this can be done using Charmichael's Lambda function instead of Euler
Totient, which can give smaller exponents (so less work). The Lambda function
divides the Totient and the result is a power of 2. For primes p and q, the Lambda
function is just the least common multiple of (p-1) and (q-1), but the result of the
Euler theorem also holds if we use the Lambda function instead.

80

80

(10)(10)
> >

Either works, but using Lambda instead of Phi is computationally easier, since 51 is
less that 131.
Sometimes they are equal (for example, if a=7, 1/7 mod 80 = 23 = 1/7 mod 160)
but often using Lambda gives a smaller decrypting exponent, and never larger.

