
>  >  

(1)(1)

>  >  
>  >  

>  >  

(2)(2)
>  >  

2019-11-21:  I neglected to save the worksheet from this class, so I will try to 
recreate it from memory.  Sorry about that.

The primary goal for today is to modify (some of) the routines from Crypto.mw so 
that they can deal with multi-letter alphabets.
That is, treat our string in bigger chunks of letters (that is, pairs of letters, triples of 
letters, etc.) rather than just single letters at a time.
While this is not so useful for a Caesar cipher, it makes frequency analysis (looking 
for common letters) much more difficult.  That is, while it is easy to look for 
common single letters (such as e, t, o, etc.), there are so many more common triples 
or 4-tuples of letters that this is much harder.  Also, it will be useful later.
Basic setup...

wi th (S t r ingToo ls ) :
A l p h a b e t  : =  c a t ( "  . " , S e l e c t ( I s A l p h a ,  c o n v e r t ( [ s e q ( i , i = 1 . . 1 2 7 ) ] ,  
b y t e s ) ) ) ;
length(Alphabet ) ;

54

Now let's copy some things from Crypto.mw that we will be revising.
S t r i n g T o L i s t : = p r o c ( s t r : : s t r i n g )
  g l o b a l  A l p h a b e t ;
  re turn (map(  s ->SearchText (s ,A lphabet ) -1 ,  Exp lode(s t r ) ) ) ;
end:
ListToStr ing:=proc(nums:: l is t (nonnegint ) )
  g l o b a l  A l p h a b e t ;
  return( Implode(map(k->Alphabet[k+1] ,nums))  ) ;
end:

Now, notice when we use StringToList, we get a list of numbers....
S t r i n g T o L i s t ( " T h i s  i s  a  s t r i n g . " )

We want to put the numbers together in some way, that is, group the 21 with the 35, 
the 36 with the 46, the 0 with the 36, etc. to represent the pair "Th", the pair "is", the 
pair " i", and so on.  We can concatenate them (as in 2135, 3646, etc.) but that will 
lead to some issues when we do arithmetic with the pairs, since not all pairs 
correspond to letter pairs (for example, in the current 54-letter alphabet, 2*2135 = 
4270, but while 42 corresponds to "o", 70 is not the code for a letter. 

So, a little aside about bases...

About representing numbers in various bases
When we write the number 2043 we mean  .  But of 
course we could use other bases.  For example, in base 2, we would represent, say, 
11 as a sum of powers of 2.  We see that  so we say that
11 (base 10) is written as 1011 (base 2). 



>  >  

>  >  

(1.8)(1.8)

>  >  

>  >  

(1.9)(1.9)

>  >  

>  >  

(1.5)(1.5)

>  >  

(1.10)(1.10)

(1.1)(1.1)

>  >  

(1.6)(1.6)

(1.2)(1.2)

>  >  

(1.4)(1.4)

(1.3)(1.3)

(1.7)(1.7)

>  >  

Base 8 is called octal, and  so in octal, we have 11 (base 10) is 13 
(base 8). Or using powers of 3, we have , so we say that 11 (base
10) is 102 (base 3).
Of course, Maple can do this for us.

conver t (11 ,b inary )
1011

c o n v e r t ( 1 1 , o c t a l )
13

The bases 2 (binary), 8 (octal), 10 (decimal), and 16 (hexadecimal or hex) have 
special names.  (To write hexadecimal, we use the numbers 0-9, A, B, C, D, E, and 
F; where A=10, B=11, C=12, D=13, E=14, and F=15, so 11 is written as B in 
hexadecimal, and 26 is 16+10 written as 1A (base 16).

convert (26,hex)
1A

This representation goes by the name "big-endian" because we write the most 
significant (or largest) numbers first.  In some contexts (eg, computer memory), 
numbers are written little-endian, with the smallest digits first.

For arbitrary bases, we can represent the "digits" as a sequence of numbers 
between 0 and one less than the base.  Maple writes the least significant digits 
first (that is, little-endian).  For example, writing 11 base 3 would be [2,0,1] or [3,1]
in base 8.   We can represent 26 in base 16 as [10,1] and in base 10 as [6,2].

conver t (11 ,base,3)

conver t (11 ,base,8)

convert (26,base,16)

convert (26,base,10)

We can convert between bases as follows:
c o n v e r t ( [ 2 , 0 , 1 ] , b a s e , 3 , 8 )

That is, the arguments are a list represented in the first base, the word 'base', the 
first base, and the base to convert it to.

As another example, suppose we represent the number 123456 in base 10, and 
then in base 100.

num:=convert(123456,base,10)

convert(num,base,10,10^2)

Now, in base 1000



>  >  

(4)(4)

>  >  

(1.11)(1.11)

(3)(3)

>  >  

>  >  

(5)(5)

>  >  

convert(num,base,10,10^3)

That is, writing the number in powers of the original base groups them together 
into blocks of the size of the power.

With that discussion in hand, we return to encryption related discussions.

When we convert our strings to a list, we can view our string as a number written in 
the base that is the length of the alphabet.
So, for example, if we are using the 26-letter alphabet consisting of the letters a-z, 
with a=0, z=25, we can think of it as a number in base 26.

Alphabet:="abcdefghijklmnopqrstuvwxyz"; alen:=length(Alphabet);

z i p 1 : = S t r i n g T o L i s t ( " z i p p i t y " ) ;

convert (z ip1,base,26,26^2)

Observe that 25+8*26=233, 15+15*26=405, 502=8+19*26, and 24=24+0*26.
Hence we can convert our message to blocks of 2 letters at a time by converting from
base 26 to base .

Now let's turn to modifying S t r i n g T o L i s t and L i s t T o S t r i n g (as well as other 
routines) so that they can use lists with different bases (that is, multi-byte blocks of 
letters instead of single letters).  I want to do this in such a way that it will still work 
as before if one doesn't ask for a different base.

So let's start modifyingS t r i n g T o L i s t.    First, let's add an optional keyword 
parameter called base, which defaults to being the length of the A lphabe t if it isn't 
specified.  Since we can't actually do a computation in this way, we'll set it to 1 and if
the base is 1, then that means use the length of the A lphabe t.
Also, we will break this up from essentially a one-line procedure to multiline.  
Changes are marked in green.  For now, let's just make a note that we will use a 
different base.

S t r i n g T o L i s t : = p r o c ( s t r : : s t r i n g,  { b a s e : : p o s i n t : = 1 })
  l o c a l  n u m l i s t ;
  g l o b a l  A l p h a b e t ;
  numl ist :=map(  s ->SearchText (s ,Alphabet ) -1 ,  Explode(str ) ) ;
  i f  ( b a s e > 1 )  t h e n
     p r i n t f ( " t h e  b a s e  i s  n o w  % d ,  s o  t h e r e  i s  w o r k  t o  d o  b u t  I  
d i d n ' t  d o  i t  y e t . \ n " , b a s e ) ;
  f i ;
  r e t u r n (numlist) ;
end:

Let's confirm that it still works as before, and that the switch tells us something.



>  >  

(6)(6)

(9)(9)

>  >  

>  >  

(8)(8)

>  >  

>  >  

>  >  

(1.11)(1.11)
>  >  

>  >  

>  >  

(7)(7)

>  >  numl is t :=S t r ingToL is t ( "z ipp i ty" ) ;

St r ingToLis t ("z ipp i ty" ,base=alen^2) ;
t h e  b a s e  i s  n o w  6 7 6 ,  s o  t h e r e  i s  w o r k  t o  d o  b u t  I  d i d n ' t  d o  i t  
y e t .

Now to discus what should be done.  The idea is to just convert n u m l i s t to the new 
base, using convert, as in

conver t (numl is t ,  base ,  a len ,  a len^2 )

Let's do that, but it isn't going to work....
S t r i n g T o L i s t : = p r o c ( s t r : : s t r i n g,  { b a s e : : p o s i n t : = 1 })
  l o c a l  n u m l i s t ;
  g l o b a l  A l p h a b e t ;
  numl ist :=map(  s ->SearchText (s ,Alphabet ) -1 ,  Explode(str ) ) ;
  i f  ( b a s e > 1 )  t h e n
     numl ist :=conver t (numl is t ,  base ,  length(Alphabet ) ,  base);
  f i ;
  r e t u r n (numlist) ;
end:
Str ingToList ("z ippi ty" ,base=alen^2)

E r r o r ,  ( i n  S t r i n g T o L i s t )  i n v a l i d  i n p u t :  c o n v e r t  e x p e c t s  i t s  2 n d
a r g u m e n t ,  f o r m ,  t o  b e  o f  t y p e  n a m e ,  b u t  r e c e i v e d  6 7 6
This failed because the first base in the call to c o n v e r t has the value 676, so in 
effect we are trying to issue the command

conver t (numl is t ,676 ,a len ,676) ;
E r r o r ,  i n v a l i d  i n p u t :  c o n v e r t  e x p e c t s  i t s  2 n d  a r g u m e n t ,  f o r m ,  
t o  b e  o f  t y p e  n a m e ,  b u t  r e c e i v e d  6 7 6
which naturally doesn't make any sense.  We have to "protect" the word base in some
way.  An easy fix is to just call it something else, as in

S t r i n g T o L i s t : = p r o c ( s t r : : s t r i n g ,  {bas: : p o s i n t : = 1 } )
  l o c a l  n u m l i s t ;
  g l o b a l  A l p h a b e t ;
  numl is t :=map(  s ->SearchText (s ,A lphabet ) -1 ,  Explode(st r ) ) ;
  i f  (bas>1 )  then
     numl is t :=conver t (numl is t ,  base ,  length(Alphabet ) ,  bas) ;
  f i ;
  r e t u r n ( n u m l i s t ) ;
end:

This will work, but I really want to call the parameter base.
Str ingToLis t ( "z ipp i ty" ,bas=a len^2) ;

We can try surronding the word base by single quotes (that works in some contexts, 
but not here), but that doesn't quite do the trick either.

S t r i n g T o L i s t : = p r o c ( s t r : : s t r i n g ,  { b a s e : : p o s i n t : = 1 } )



>  >  

>  >  

(6)(6)

>  >  

>  >  

>  >  

(11)(11)

(13)(13)

(12)(12)

(1.11)(1.11)
>  >  

(10)(10)

>  >  

>  >  

>  >  

>  >  

  l o c a l  n u m l i s t ;
  g l o b a l  A l p h a b e t ;
  numl is t :=map(  s ->SearchText (s ,A lphabet ) -1 ,  Explode(st r ) ) ;
  i f  ( b a s e > 1 )  t h e n
     numl is t :=conver t (numl is t ,  ' base' ,  l e n g t h ( A l p h a b e t ) ,  b a s e ) ;
  f i ;
  r e t u r n ( n u m l i s t ) ;
end:
St r ingToLis t ("z ipp i ty" ,base=alen^2) ;

E r r o r ,  ( i n  S t r i n g T o L i s t )  i n v a l i d  i n p u t :  c o n v e r t  e x p e c t s  i t s  2 n d
a r g u m e n t ,  f o r m ,  t o  b e  o f  t y p e  n a m e ,  b u t  r e c e i v e d  6 7 6
It is not obvious, but we have to write it as  ' : - b a s e '.  This is described in the 
"Keyword Matching" section of the help page on argument processing.

S t r i n g T o L i s t : = p r o c ( s t r : : s t r i n g ,  { b a s e : : p o s i n t : = 1 } )
  l o c a l  n u m l i s t ;
  g l o b a l  A l p h a b e t ;
  numl is t :=map(  s ->SearchText (s ,A lphabet ) -1 ,  Explode(st r ) ) ;
  i f  ( b a s e > 1 )  t h e n
     numl is t :=conver t (numl is t ,  ' : -base' ,  l e n g t h ( A l p h a b e t ) ,  b a s e ) ;
  f i ;
  r e t u r n ( n u m l i s t ) ;
end:

Now it works:
Str ingToLis t ("z ipp i ty" ,base=alen^2) ;

Now let's adjust ListToString to undo this.
ListToStr ing:=proc(nums:: l is t (nonnegint ),  { b a s e : : p o s i n t : = 1 })
  l o c a l  n u m l i s t ;
  g l o b a l  A l p h a b e t ;
  i f  ( b a s e > 1 )  t h e n
     n u m l i s t : = c o n v e r t ( n u m s ,  ' : - b a s e ' ,  b a s e ,  l e n g t h ( A l p h a b e t ) ) ;
  e l s e
     n u m l i s t : = n u m s ;
  f i ;
  return( Implode(map(k->Alphabet[k+1] ,numlist) )  ) ;
end:

Let's give it a try:
A l p h a b e t  : =  c a t ( "  . " , S e l e c t ( I s A l p h a ,  c o n v e r t ( [ s e q ( i , i = 1 . . 1 2 7 ) ] ,  
b y t e s ) ) ) :  l e n g t h ( A l p h a b e t ) ;

54

n u m l i s t : =  S t r i n g T o L i s t ( " I  l i k e  b i g  b a s e  a n d  I  c a n  n o t  l i e . " ,  
base=length(Alphabet)^4)

ListToStr ing(numlist ,base=length(Alphabet)^4)
"I like big base and I can not lie."



>  >  

>  >  

(6)(6)

>  >  

(14)(14)

(16)(16)

>  >  

(1.11)(1.11)
>  >  

>  >  

(17)(17)

(15)(15)

>  >  

>  >  

Note that although a base which is the  power of the length of the Alphabet 
corresponds to taking letters in blocks of size , we can, in fact, use any integer base 
as long as we are consistent.  For example: 

n u m l i s t : =  S t r i n g T o L i s t ( " I  l i k e  b i g  b a s e  a n d  I  c a n  n o t  l i e . " ,  
base=4096)

ListToStr ing(numlist ,base=4096);
"I like big base and I can not lie."

To finish, let's adjust the Affine cipher to deal with the bigger bases.   Similar 
changes work for the other ciphers as well, but are less useful.

A f f i n e : = p r o c ( m s g : : s t r i n g , a : : i n t e g e r ,  b : : i n t e g e r : = 0 ,  
{ d e c r y p t : : t r u e f a l s e : = f a l s e },  { b a s e : : p o s i n t : = 1 })
  g l o b a l  A l p h a b e t ;
  l o c a l  modbase, n u m l i s t ;
  i f  ( b a s e > 1 )  t h e n
     modbase:=base;
  e l s e
     modbase:= length(Alphabet ) ;
  f i ;
  i f  ( g c d ( a ,  modbase)<>1 )  then
     e r r o r ( s p r i n t f ( " % d  i s  n o t  c o p r i m e  t o  t h e  modulus base ( % d ) ;  
cannot  decryp t" ,a ,  modbase) ) ;
  f i ;
  i f  ( d e c r y p t )  t h e n
     r e t u r n ( A f f i n e ( m s g ,  m o d p ( 1 / a ,modbase) ,  m o d p ( - b / a ,  modbase) ,  
':-base'=modbase) ) ;
  f i ;
  numlist :=Str ingToList (msg,  ' : -base'=modbase) ;
  numlist:=map(x->a*x+b mod modbase,  n u m l i s t ) ;
  r e t u r n ( L i s t T o S t r i n g ( n u m l i s t,  ' : -base'=modbase) ) ;
end:

Let's give this a try.  First, for the original affine encryption, observe that a repeated 
letter always has the same encryption, so "oo"->"tt", "kk"->"dd", and "ee"->"FF".

crypto:=Aff ine("bookkeeper" ,31,41) ;
A f f i n e ( c r y p t o , 3 1 , 4 1 , d e c r y p t ) ;

"bookkeeper"

Using a different base, this is unlikely to be true (since pairs or triples of double 
letters are unlikely to align on block boundaries).

crypto:=Aff ine("bookkeeper",31,41,base=54^3);
Af f ine(crypto,31 ,41 ,base=54^3,decrypt ) ;



(17)(17)

(1.11)(1.11)

(6)(6)

>  >  

>  >  

>  >  

"bookkeeper"

Maybe I managed to (nearly) recreate the class.  At least this is (roughly) what I 
remember doing.    Soon I will update Crypto.mw to include these changes.


