[2019-11-04 : crashing the glider!

;> with(DEtools) :

> xphug(R) = {diﬁ‘(theta(t),t) —v(1) — % diff (v(£), t) =-sin (theta(f)) — R
v(1)?,
diff (x(t), t) =v(t)-cos(theta(z)), diff (y (t)'sin(theta(t))};
xphug = R — [% 0(1) =v(1) — S‘E) (1) ,% v(1) = -sin(0(2)) —Rv(1)?, % x(1) @)
=v(1) cos(0(1)), < v = (1) sin(em)]

;Let's confirm that the equations are entered correctly.

> plots|display] (<

DEplot(xphug(.3), [theta(z), v(¢), x(2), y(¢)],¢=0..10,
[theta(O)=%i,v(0)=1,x(0)=o,y(0)=2]

theta=-Pi..P1,v=0..2,x=-2.10,y=-1.3, obsrange=false, linecolor = black, stepsize

=.1,
scene = [theta, v], scaling = constrained) ‘
DEplot(xphug(.3), [theta(¢), v(¢t), x(¢t),y(¢t)], t=0..10,

|]’

theta=-Pi..Pi,v=0..2,x=-2.10,y=-1.3, obsrange=false, linecolor = black, stepsize

theta(0) = P?, v(0)=1,x(0) =0,y(0) =2

=.1,

scene =[x, y], scaling = constrained) >)

=Yup, looks as we expect. Note that the glider "flies” underground... that is, when y<O.

| Now let's change the equations so it doesn't fly when y<O.

> crasher(R) = {diff(theta(t), t) =piecewise(y(z‘) >0,v(t) — M, 0),

v(t)
diff (v(1), t) = piecewise(y(t) > 0,-sin(theta(?)) — R-v(£)% 0),

diff (x(t), t) =piecewise(y(t) > 0, v(¢)-cos(theta(z)),0),

> plots|display] (<

DEplot(crasher(.3), [theta(?), v(¢),x(¢),y(¢)],t=0..10,

|

theta=-Pi..Pi,v=0..2,x=-2.10,y=-1.3, obsrange=false, linecolor = black, stepsize

diff (yv(t), t) = piecewise(y(t) > 0, v(¢) -sin(theta(z)), 0) } :

cheta(O) = P?i, v(0)=1,x(0) =0,y(0) =2

=.1,
scene = [theta, v], scaling = constmined) ‘

DEplot(crasher(.3), [theta(z), v(¢), x(2), y(¢)],¢=0..10,

|

theta=-Pi..P1,v=0..2,x=-2.10,y=-1.3, obsrange=false, linecolor = black, stepsize

cheta(O) - PTi, v(0) =1,x(0) =0, 3(0) =2

=.1,

scene =[x, y], scaling = constmined) >)

[That looks like it worked.

Our goal for today is to write a function that, given an input angle theta(0), tells us how far the glider
went before hitting the ground (assuming a fixed input velocity v(0), starting height (y(0)), and drag
| constant (R)

|_let's use dsolve(..., numeric)
> solPi3 = dsolve(op (crasher(.3)), theta(0) = %, v(0)=1,x(0)=0,y(0)=2
solPi3 = proc(x_rkf45) ... end proc 2

, numeric)

(> s0lPi3(2)
[£=2.,0(1) = —1.06295629847427, v() = 0.926127351480627, x(¢) =0.515162162276087, 3)

y(t) =1.92503648205329 |

(> 50lPi3(10)
[£=10.,0(¢) = —0.340292597271623, v(¢) = 1.01025112998594, x(¢) = 5.51606970068429, 4)

y(t) = —2.33519505139458 10_7]

(> s0lPi3(8)
[£=8.,0(1) = —0.340292597271623, v(¢) = 1.01025112998594, x(¢) = 5.51606970068429, (5)

y(t) = —2.33519505139458 10_7]
| When did it hit the ground? | can just see that it hit sometime between t=2 and t=8....

> DEplot(crasher(.3), [theta(z), v(¢), x(2), y(¢)], ¢=0..10,

|

theta=-Pi..P1,v=0.2,x=-2.10,y=-1.3, obsrange=false, linecolor =red, stepsize

cheta(O) - %i, v(0) =1,x(0) =0, (0) =2

=.1,

scene = [t,y], scaling = constrained)

[Just in case we want to know WHEN it crashed, we can add a clock that stops when the plane hits the
ground. Thatis, we add a variable which starts at 0 when t=0, and has derivative 1 with respect to t if
Ly>0, but derivative 0 when y<0.

> crasher(R) = {diff(theta(t), t) =piecewise(y(t) >0,v(t) — M, O),

v(t)
diff (v(1), t) =piecewise(y(t) > 0,-sin(theta(z)) — R-v(1)% 0),

diff (x(t), t) =piecewise(y(t) > 0, v(¢)-cos(theta(z)),0),
diff (y(t), t) = piecewise(y(t) > 0, v(t) -sin(theta(z)), 0),

diff (clock(t), t) = piecewise(y(t) > 0, 1, O)}

d 1 0 <y(?) d
crasher := R — { — clock(t) = , — O(¢ 6
dt (®) 0 otherwise dt) ©)
cos(0(2))
v(t) — 0<y(t) d
= l’ B —
V(1) 4 v(t)
0 otherwise

sin(8(1) —Rv(1)> 0 <y(r) 4 ” {v(t)cos(e(t)) 0<y(t) 4
_) =

0 otherwise 0 otherwise dt

0 otherwise

|v(z) sin(6(6)) 0 <y(1)]

> so0lPi3 = dsolve([op(cmsher(.3)), theta(0) = P?, v(0)=1,x(0)=0,y(0) =2, clock(0)

=0

, numeric)
solPi3 := proc(x_rkf45) ... end proc)
(> s0lPi3(8)
[t=8., clock(t) =7.35931992790298, 6(¢) = —0.340292614839344, v(t) (8)
=1.01025112201649, x(t) =5.51606955357705, y(t) = —1.72119202716075 10_7]
> 50IPi3(20)
[£=20., clock(t) =7.35931992790298, 0(¢) = —0.340292614839344, v(t) 9)
| =1.01025112201649, x(1) =5.51606955357705, y(1) = —1.72119202716075 1077]
(> 50lPi3(6)
[t=6., clock(t) =6.,0(t) = —0.339277815709023, v(t) =0.907897114988835, x(1) (10)
| =4.28806699038502, y(1) =0.467817414868425 |
['So we can see that clock(t)=t as long as y>0, but as soon as y<0, the clock stops.

;Recall, we want a function that given initial angle, gives x when it hits.

First step, write a function that solves de with given initial theta.

To write 6, type theta_ 0

Here, R is an optional second parameter that has value .3 if not specified, but allows us to change R if
| we want.

> solfunc ==pr0c(90, R := .3)

return(

dsolve([op(cmsher(R)), theta(0) 290, v(0)=1,x(0)=0,y(0) =2, clock(0) ZO], numeric)

):

| end:
> solfunc(%) (20) # here, R=.3
[£=20., clock(t) =7.35931992790298, 6(¢) = —0.340292614839344, v(t) (11)

=1.01025112201649, x(t) =5.51606955357705, y(t) = —1.72119202716075 10_7]

> solfunc(%, .1) (20) # here R=.1
[£=20., clock(t) =19.0248272973520, 6(¢) = —0.106300008391200, v(¢) (12)
=0.949596788719964, x(t) =17.1392773541023, y(t) = —1.14985759463191 10_8]

[> solfunc(0) (20)
[£=20., clock(t) =7.52230198342977, 6(¢) = —0.299702064083077, v(t) (13)

=0.984795466218774, x(t) =6.90830624735042, y(t) = —2.03465257224724 10_7]

| Then, we can pick out the value of x when it crashes using eval, as in
> eval(x(t), (13))
6.9083062474 (14)

:Or, as a function:
> xcrash == theta—eval(x(t), solfunc(theta) (20))
xcrash = 0 — eval(x(t), solfunc(0) (20)) (15)

> xcmsh(%)
6.7652515213 (16)

_The following doesn't work as we would expect:
> plot(xcrash(angle), angle=-P1..Pi)
Warnlng, The use of global variables in numerical ODE problems

is deprecated, and will be removed in a future release. Use the
'parameters' argument instead (see ?dsolve.numeric.parameters)

Error, (in unknown_) parameter '_anqle' must be assigned a numeric
value before obtaining a solution

What is going on? Why does it hate me? (I know, I'm doing this for effect).

Let's try something simpler. A digression follows.
_Let's try the same thing with a function which returns x if x<1, and x*2 if x>= 1.
> xquad :=proc(x)
if (x > 1) then return(xz);
else return(x);
fi,
| end:
This suffers from the same problem, which is not at all obvious (even though the error message is
| different, it is the same problem)

> plot(xquad(x),x=0..2)
Error, (in xquad) cannot determine if this expression is true or
_false 1 < X

> xquad(.5), xquad(2)

0.5, 4 17)

[Note that the function works when called with numeric arguments, but gives the error (which makes
| sense) when called with a symbolic one:
> xquad(whaa)
Error, (in xquad) cannot determine if this expression is true or

| false: 1 < whaa

What is happening is that when plot is called, maple tries to evaluate xquad(x) first (so that it can see if
it is able to do some simplification of the argument to plot), then it calls it with values of x between 0
and 2 to generate the plot.

One way around this issue is to just call plot WITHOUT specifying a variable.

[> plot(xquad, 0 ..2)

0.5 1 1.5 2

;Yup, that works. Let's try it with xcrash
> plot(xcrash,-Pi..Pi)

xa xa
4 2

_Hey, cool! it worked.

But let's try another way... maybe | really want to say the input variable. If I put the call to the function
_in single quotes, this tells maple not to try to evaluate it right away.

> plot('xcrash'(t), t=-Pi..Pi)

T m 3n wm
4 2 4

However, this is kind of a pain in the butt, to remember to put it in quotes all the time.

We can be clever and check if the passed in value is actually a number. Ifitis, go ahead and evaluate
the function. Ifitisn't, then just return the name of the function inside quotes. That way, if we forget
the quotes, it still works.

We can check whether something is numeric or not using the maple command type (similar to
| whattype):
> whattype(x)
symbol (18)
> whattype(32.6), whattype(6)
float, integer (19

;so X is a symbol, and 32.6 is a float, and 6 is an integer.

> type(x, numeric), type(32.6, numeric), type(6, numeric), type(Pi, numeric)
false, true, true, false (20)

_Wait, why isn't Pi numeric? Cuz itisn't a number, it is a symbol that evaluates to a number if we want
| to approximate fit.

> whattype(evalf (Pi))
float (21)

=OK, so we can ask if evalf() of the argument is of type numeric. If so, go ahead and plug it in. If not,
| just return a quoted version of the function.

> xcrash ==proc(ang)
local crashvals;
if (type(evalf (ang), numeric)) then
crashvals := solfunc(ang) (20);
return(eval(x(t), crashvals));
fi,
return('xcrash'(ang));

| end:
| Does it behave as we expect?
> xcrash(.1), xcrash(stuff’), xcrash(P1)

i 6.9137506885, xcrash(stuff’), 0.5381780817 (22)
> plot(xcrash(t), t=- % %)

[> plot(xcrash(theta), theta =-P1..P1)

N
CREI

=What is this weirdness just above 3Pi/4 ?
| Let's take a look.

> DEplot(crasher(.3), [theta(z), v(¢), x(t), y(t), clock(t)],t=0..10,

cheta(0)= 131'6Pi,v(0)=1,x(0)=o,y(0)=2, clock(0)=0],
theta(0) = 141'6Pi,v(0)=1,x(0)=0,y(0)=2,czock(0)=0H,

x=-1.3,y=0..2.5, obsrange=false, linecolor = [blue, red], stepsize =.1,
scene =[x, y], scaling = constrained)

2.57

So, for angles too close to Pi, the glider crashes before it fully flips over, but those further away just
| miss crashing and manage to go further. This gives a discontinuity in the distance travelled.

But wait.... We forgot about the ability to vary the drag parameter R (which was written into solfunc)
| Just as a reminder:

> solfunc(1461)1

[£=20.0000000000, clock(t) =7.3593192736, 6(¢) =5.9428928186, v(¢) =1.0102512759, x(¢) (23)
=5.5160687635, y(t) = —3.0360274457 10_7]
14 Pi

) (20) #uses R=.3

> solfunc(, .3) (20)
[£=20.0000000000, clock(t) =7.3593192736, 6(¢) =5.9428928186, v(¢) =1.0102512759, x(¢) (24)
=5.5160687635, y(t) = —3.0360274457 10_7]

> solfunc(146P1 , .1) (20) # R=.1
[£=20.0000000000, clock(t) =19.0248344358, 0(t) = 6.1768837469, v(t) =0.9495957873, (25)

x(t) =17.1392817040, y(t) = —7.1633861937 10_8]

| We want to add a parameter R to xcrash. | forgot about it before, so here itis.
> xcrash :=proc(ang, R := .3)
local crashvals;
if (type(evalf (ang), numeric)) then
crashvals := solfunc(ang, R) (20);
return(eval(x(t), crashvals));
fi,
return('xcrash'(ang, R));

| end:
> xcmsh(14 Pi) #R=.3
_ 5.5160687635 (26)
> xcrash(146Pi , .1)
17.1392817040 (27)

> plot([xcrash(t, .2), xcrash(t, .3), xcrash(t, 4)], t=-Pi..Pi, dist=0..12)

12 -

L L L n . 2°2n
4 2 4 4 2 4
t

;So all is good, right? What if R is really small?
> xcrash(0, .05)
i 19.9282874245 (28)
> xcrash(0,0)

20.0000000000 (29

;Do you believe these? You shouldn't.
> solfunc(0, .1)(20)
[#=20.0000000000, clock(t) =20.0000000000, 6(z) = —0.1046720285, v(¢) =0.9971563773, (30)

x(t) =19.7921201575, y(t) =0.0307219138]

[> solfunc(0, .05) (20)
[£=20.0000000000, clock(t) =20.0000000000, 6(¢) = —0.0611394053, v(¢) =0.9991947195, (31)

x(t) =19.9282874245, y(t) = 1.0066520645]

[The problem is that you need t>20 to hit the ground for R=.1 or less.
We can fix this by increasing the time to look for the crash, but... It might make more sense to try some
time, if it didn't work, go a little more, etc. But let's leave that alone for now....

| Next time, we start doing cryptography stuff.

