[2019-10-29 Let's deal with stalling.
$>R:=$ 'R':

$$
\begin{aligned}
\text { phug }:= & {\left[\operatorname{diff}(\operatorname{theta}(t), t)=v(t)-\frac{\cos (\operatorname{theta}(t))}{v(t)}, \operatorname{diff}(v(t), t)=-\sin (\operatorname{theta}(t))\right.} \\
& \left.-R \cdot v(t)^{2}\right]:
\end{aligned}
$$

$[>$ with(DEtools):
> $R:=.2$;
DEplot(phug, [theta, $v], t=0 . .5,[\operatorname{seq}([v(0)=j$, theta $(0)=0], j=.9 . .3 .0, .25)]$, theta $=-\frac{\mathrm{Pi}}{2} . . \frac{3 \cdot \mathrm{Pi}}{2}, v=0 . .2$, linecolor $=$ black $)$;

$$
R:=0.2
$$

[> $R:=.2 ;$
DEplot(phug, [theta, $v], t=0 . .5,[\operatorname{seq}([v(0)=j$, theta $(0)=0], j=.9 . .3 .0, .25)]$, theta $=-\frac{\mathrm{Pi}}{2} . . \frac{3 \cdot \mathrm{Pi}}{2}, v=0 . .2$, linecolor $=$ black, obsrange $=$ false, stepsize $=.05$);

$$
R:=0.2
$$

What does $v=0$, theta $=\mathrm{Pi} / 2$ mean for these equations?
Want to extend to $\mathrm{v}=0$. Trick is to multiply both factors by $\mathrm{v}(\mathrm{t})$.
> $R:=$ 'R':
$v p h u g:=\left[\operatorname{diff}(\operatorname{theta}(t), t)=v(t)^{2}-\cos (\operatorname{theta}(t)), \operatorname{diff}(v(t), t)=v(t) \cdot(\right.$
$\left.\left.-\sin (\operatorname{theta}(t))-R \cdot v(t)^{2}\right)\right]:$
> $\mathrm{R}:=.2$;
$\operatorname{DEplot}(v p h u g,[$ theta, $v], t=0 . .5,[\operatorname{seq}([\nu(0)=j$, theta $(0)=0], j=.9 . .3 .0, .25)]$, theta $=-\frac{\mathrm{Pi}}{2} . . \frac{3 \cdot \mathrm{Pi}}{2}, v=0 . .2$, linecolor $=$ black, obsrange $=$ false, stepsize $=.05$);

$$
R:=0.2
$$

$\left[>\operatorname{eval}\left(\operatorname{map}(r h s, v p h u g),\left\{v(t)=0\right.\right.\right.$, theta $\left.\left.(t)=\frac{\mathrm{Pi}}{2}\right\}\right)$

$$
\begin{equation*}
[0,-0 .] \tag{1}
\end{equation*}
$$

Have a fixed point at $\mathrm{v}=0$, theta= $\mathrm{Pi} / 2$ (also at $-\mathrm{Pi} / 2$). It should be a saddle. Let's check.
> map(rhs, vphug)

$$
\begin{equation*}
\left[v(t)^{2}-\cos (\theta(t)), v(t)\left(-\sin (\theta(t))-0.2 v(t)^{2}\right)\right] \tag{2}
\end{equation*}
$$

[> $\operatorname{subs}(\{v(t)=v$, theta $(t)=$ theta $\}, \%)$

$$
\begin{equation*}
\left[v^{2}-\cos (\theta), v\left(-\sin (\theta)-0.2 v^{2}\right)\right] \tag{3}
\end{equation*}
$$

[> $F:=\operatorname{unapply}(\%,($ theta, $v))$

$$
\begin{equation*}
F:=(\theta, v) \mapsto\left[v^{2}-\cos (\theta), v\left(-\sin (\theta)-0.2 v^{2}\right)\right] \tag{4}
\end{equation*}
$$

$$
\left[\begin{array}{rl}
> & \text { solve }(F(\text { theta, } v)) \\
\{\theta=1.570796327, v=0 .\},\{\theta=-0.1973955598, v=0.9902427357\},\{\theta \\
\quad & =-0.1973955598, v=-0.9902427357\},\{\theta=2.944197094, v \\
& =0.9902427357 \mathrm{I}\},\{\theta=2.944197094, v=-0.9902427357 \mathrm{I}\}
\end{array}\right]
$$

[> with(LinearAlgebra):

$$
\begin{align*}
& \mid>\operatorname{Jack}:=\operatorname{Jacobian}(F(\text { theta, } v),[\text { theta, } v]) \\
& \text { Jack }:=\left[\begin{array}{cc}
\sin (\theta) & 2 v \\
-v \cos (\theta) & -\sin (\theta)-0.6 v^{2}
\end{array}\right] \\
& >\operatorname{eval}\left(\operatorname{Jack},\left\{\text { theta }=\frac{\mathrm{Pi}}{2}, v=0\right\}\right) \\
& {\left[\begin{array}{cc}
1 & 0 \\
0 & -1 .
\end{array}\right]} \tag{7}\\
& >\operatorname{eval}\left(\operatorname{Jack},\left\{\text { theta }=\frac{-\mathrm{Pi}}{2}, v=0\right\}\right) \\
& {\left[\begin{array}{cc}
-1 & 0 \\
0 & 1 .
\end{array}\right]} \tag{8}\\
& \text { [> DEplot }(\text { vphug, [theta, } v], t=0 . .50,\left[\left[v(0)=0 \text {, theta }(0)=\frac{\mathrm{Pi}}{2}-.01\right],[v(0)=0.1 \text {, }\right. \\
& \left.\left.\operatorname{theta}(0)=\frac{-\mathrm{Pi}}{2}\right],[v(0)=2.23, \operatorname{theta}(0)=0]\right] \text {, } \\
& \text { theta } \left.=-\frac{\mathrm{Pi}}{2} . . \frac{3 \cdot \mathrm{Pi}}{2}, v=0 . .2 \text {, linecolor }=\text { [blue, blue, red }\right] \text {, obsrange }=\text { false, stepsize } \\
& =.05 \text {); }
\end{align*}
$$

[> DEplot (vphug, [theta, $v], t=0 . .50,\left[\left[v(0)=0\right.\right.$, theta $\left.(0)=\frac{\mathrm{Pi}}{2}-.01\right],[v(0)=0.1$, theta $\left.\left.(0)=\frac{-\mathrm{Pi}}{2}\right],[\nu(0)=2.23, \operatorname{theta}(0)=0]\right]$,
theta $=-\frac{\mathrm{Pi}}{2} . . \frac{3 \cdot \mathrm{Pi}}{2}, v=0 . .2$, linecolor $=[$ blue, blue, red $]$, obsrange $=$ false, stepsize $=.1$)

\square

