[2010-10-22
[Let's apply the fixed point analysis we did last time to the phugoid " $>R:=$ ' R ':
phug $:=\left[\mathrm{D}(\right.$ theta $\left.)(t)=v(t)-\frac{\cos (\operatorname{theta}(t))}{v(t)}, \mathrm{D}(v)(t)=-\sin (\operatorname{theta}(t))-R \cdot v(t)^{2}\right]:$
[> with(DEtools):
$R:=0.2$;
DEplot (phug, [theta, v], $t=0 . .10$, theta $\left.=-\frac{\mathrm{Pi}}{2} . . \frac{3 \cdot \mathrm{Pi}}{2}, v=0 . .2\right)$

$$
R:=0.2
$$

[OK, it seems to be right. Let's put R back to be a variable.
[> $R:=$ 'R':
I don't want to retype, but I want to solve the right=hand side of both equations $=0$ in terms of R. How?
Lone idea:
$>\operatorname{subs}(\{\mathrm{D}($ theta $)(t)=0, \mathrm{D}(v)(t)=0\}$, phug $)$

$$
\begin{equation*}
\left[0=v(t)-\frac{\cos (\theta(t))}{v(t)}, 0=-\sin (\theta(t))-R v(t)^{2}\right] \tag{1}
\end{equation*}
$$

[Another way: as Marc suggests, use rhs to extract RightHandSide
> rhs(this = that)
that
> map(rhs, phug)

$$
\begin{equation*}
\left[v(t)-\frac{\cos (\theta(t))}{v(t)},-\sin (\theta(t))-R v(t)^{2}\right] \tag{3}
\end{equation*}
$$

$\overline{\lceil }$ vfield $:=\operatorname{subs}(\{v(t)=v$, theta $(t)=$ theta $\},(3))$

$$
\begin{equation*}
v \text { field }:=\left[v-\frac{\cos (\theta)}{v},-\sin (\theta)-R v^{2}\right] \tag{4}
\end{equation*}
$$

[
note that using (4) is different from \%, since \% means the last result, and (4) means result with eq number (4), no matter what order you do things. to get (4), double click on the label. Or just give your result a name, like vfield.
$>\operatorname{solve}([v f i e l d[1]=0$, vfield $[2]=0])$

$$
\begin{equation*}
\left\{R=\frac{\operatorname{RootOf}\left(v^{4}+Z^{2}-1\right)}{v^{2}}, \theta=\arctan \left(-\operatorname{RootOf}\left(v^{4}+Z^{2}-1\right), v^{2}\right), v=v\right\} \tag{5}
\end{equation*}
$$

[Not what I want, but close. Maple guessed I want a solution in terms of R and theta in terms of v instead of (theta, v) in terms of R. Maybe I should tell it what to solve for.
[> solve([vfield $[1]=0, v$ field $[2]=0],\{$ theta, $v\}$)

$$
\begin{aligned}
& \left\{\theta=\arctan \left(-\operatorname{RootOf}\left(-1+\left(R^{2}+1\right) _Z^{2}\right) R, \operatorname{RootOf}\left(-1+\left(R^{2}+1\right) _Z^{2}\right)\right), v\right. \\
& \left.\quad=\operatorname{RootOf}\left(_Z^{2}-\operatorname{RootOf}\left(-1+\left(R^{2}+1\right) _Z^{2}\right)\right)\right\}
\end{aligned}
$$

> convert($\%$, radical)

$$
\begin{equation*}
\left\{\theta=\arctan \left(-\sqrt{\frac{1}{R^{2}+1}} R, \sqrt{\frac{1}{R^{2}+1}}\right), v=\left(\frac{1}{R^{2}+1}\right)^{1 / 4}\right\} \tag{7}
\end{equation*}
$$

[Why is arctan weird? Cur it doesn't know if R is complex, or even non negative.
>> solve $([v$ field $[1]=0$, field $[2]=0]$, $\{$ theta, $v\}$):
fixsol $:=$ convert($\%$, radical) assuming $R \geq 0$

$$
\begin{equation*}
\text { fixsol }:=\left\{\theta=-\arctan (R), v=\left(\frac{1}{R^{2}+1}\right)^{1 / 4}\right\} \tag{8}
\end{equation*}
$$

$>\operatorname{subs}($ fixsol, [theta, v])

$$
\begin{equation*}
\left[-\arctan (R),\left(\frac{1}{R^{2}+1}\right)^{1 / 4}\right] \tag{9}
\end{equation*}
$$

$>$ Fixpt $:=\operatorname{unapply}(\operatorname{subs}($ fixsol, [theta, v]), R)

$$
\begin{equation*}
\text { Fixpt }:=R \mapsto\left[-\arctan (R),\left(\frac{1}{R^{2}+1}\right)^{1 / 4}\right] \tag{10}
\end{equation*}
$$

$>$ Fixpt(.2)

$$
\begin{equation*}
[-0.1973955598,0.9902427357] \tag{11}
\end{equation*}
$$

$>\operatorname{plot}(\operatorname{Fixpt}(R), R=0 . .2)$

[not what I want.
I want [theta, v, R=0..2]
$>\operatorname{op}(\operatorname{Fixpt}(R))$

$$
\begin{equation*}
-\arctan (R),\left(\frac{1}{R^{2}+1}\right)^{1 / 4} \tag{12}
\end{equation*}
$$

> $>\operatorname{op}(\operatorname{Fixpt}(R)), R=0 . .2]$

$$
\begin{equation*}
\left[-\arctan (R),\left(\frac{1}{R^{2}+1}\right)^{1 / 4}, R=0 . .2\right] \tag{13}
\end{equation*}
$$

$\left[>\operatorname{plot}\left([\operatorname{op}(\operatorname{Fixpt}(R)), R=0 . .2]\right.\right.$, theta $\left.=-\frac{\mathrm{Pi}}{2} . .0 .1, v=0 . .1 .1\right)$

[> with(plots) :

$$
\begin{aligned}
& >\operatorname{display}\left(\left[\operatorname { p l o t } \left([\operatorname{op}(\operatorname{Fixpt}(R)), R=0 . .2], \text { theta }=-\frac{\mathrm{Pi}}{2} . .0 .1, v=0 . .1 .1,\right.\right.\right. \text { scaling } \\
& \quad=\text { constrained }), \\
& \quad \text { textplot }\left(\left[-\frac{\mathrm{Pi}}{8}, .75, \text { "R values from } 0 \text { to } 2 ",\right] \text {, align }=[\text { above, left }],\right. \\
& \text { rotation } \left.\left.\left.=\frac{\mathrm{Pi}}{8}\right)\right]\right)
\end{aligned}
$$

[>Fixpt(.4)

$$
\begin{equation*}
[-0.3805063771,0.9635749534] \tag{14}
\end{equation*}
$$

Goal: Given R, find fixed point (done), and determine its type (elliptic, sink, source, saddle, blah blah) by looking at the Trace and Determinant of the Jacobian.
> vfield

$$
\begin{equation*}
\left[v-\frac{\cos (\theta)}{v},-\sin (\theta)-R v^{2}\right] \tag{15}
\end{equation*}
$$

> Jacobian
Jacobian
[Have to load Jacobian from VectorCalculus package.
[> with(VectorCalculus) :
> jack $:=\operatorname{Jacobian}(v f i e l d,[$ theta, $v])$

$$
\text { jack }:=\left[\begin{array}{cc}
\frac{\sin (\theta)}{v} & 1+\frac{\cos (\theta)}{v^{2}} \tag{17}\\
-\cos (\theta) & -2 R v
\end{array}\right]
$$

$\stackrel{+}{\square}$
What is the Jacobian at the fixed point when $R=0.4$?
A dumb way (but right):
$>\operatorname{JacksADullBoy}:=\operatorname{eval}($ jack, $\{R=0.4$, theta $=-0.3805063771, v=0.9635749534\})$

$$
\text { JacksADullBoy }:=\left[\begin{array}{cc}
-0.3854299813 & 2.000000000 \tag{18}\\
-0.9284766909 & -0.7708599628
\end{array}\right]
$$

[To do linear algebra, it is useful to load LinearAlgebra
[> with(LinearAlgebra):
> Trace(JacksADullBoy), Determinant(JacksADullBoy)
-1.156289944, 2.154065923
[> Trace(JacksADullBoy) ${ }^{2}<4 \cdot$ Determinant(JacksADullBoy)

$$
\begin{equation*}
1.337006435<8.616263692 \tag{20}
\end{equation*}
$$

So this is a spiral sink, because

Trace<0, Trace^2 < 4*Det

Lets write the Jacobian at the fixed point in terms of R only. The answer as a function is ugly stuff, so I supress it with :, then evaluate it prettier.
$>\operatorname{JackFix}:=$ unapply $(\operatorname{eval}(\operatorname{jack},\{v=\operatorname{Fixpt}(R)[2]$, theta $=\operatorname{Fixpt}(R)[1]\}), R)$: $\operatorname{JackFix}(R)$

$$
\left[\begin{array}{cc}
-\frac{R}{\sqrt{R^{2}+1}\left(\frac{1}{R^{2}+1}\right)^{1 / 4}} & 1+\frac{1}{\sqrt{R^{2}+1} \sqrt{\frac{1}{R^{2}+1}}} \tag{21}\\
-\frac{1}{\sqrt{R^{2}+1}} & -2 R\left(\frac{1}{R^{2}+1}\right)^{1 / 4}
\end{array}\right]
$$

> JackFix(0.4)

$$
\left[\begin{array}{cc}
-0.3854299817 & 2.000000000 \tag{22}\\
-0.9284766913 & -0.7708599628
\end{array}\right]
$$

[>JackFix (3)

$$
\left[\begin{array}{cc}
-\frac{310^{3 / 4}}{10} & 2 \tag{23}\\
-\frac{\sqrt{10}}{10} & -\frac{310^{3 / 4}}{5}
\end{array}\right]
$$

[> Eigenvalues(JackFix(0.4))

$$
\left[\begin{array}{c}
-0.578144972250000+1.34900493513453 \mathrm{I} \tag{24}\\
-0.578144972250000-1.34900493513453 \mathrm{I}
\end{array}\right]
$$

Another way to see that we have a spiral sink: complex eigenvalues, with negative real part.
For a big value of R, we have real eigenvalues that are both negative
[> Eigenvalues(JackFix(3.0))

$$
\left[\begin{array}{l}
-2.24936529870151+0 . \mathrm{I} \tag{25}\\
-2.81170662829849+0 . \mathrm{I}
\end{array}\right]
$$

-

We will see next time that at $R=2 \sqrt{2}$, we get two negative but equal eigenvalues. This is actually easy to do, so let me just put it here.

We want to solve where Trace^2 $=$ 4* * Det in terms of R.
$>\operatorname{solve}\left(\operatorname{Trace}(\operatorname{JackFix}(R))^{2}=4 \cdot \operatorname{Determinant}(\operatorname{JackFix}(R))\right)$

$$
\begin{equation*}
2 \sqrt{2},-2 \sqrt{2} \tag{26}
\end{equation*}
$$

[> Eigenvalues(JackFix(2•sqrt(2)))

$$
\left[\begin{array}{c}
-\sqrt{2} \sqrt{3} \tag{27}\\
-\sqrt{2} \sqrt{3}
\end{array}\right]
$$

