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2019-10-01    The last gasp of least squares.

First, let's grab some data from to fit that includes some nasty outliers.
ExecuteFromWeb:=proc(URL: :s t r ing ,  {pr in t f i le : : t ruefa lse:=fa lse} )
 l o c a l  n , m ,  s t a t u s ,  w e b f i l e ,  h e a d e r s ;
 status,webfi le,headers:=HTTP[Get](URL):
 i f  (  HTTP[Code] (s ta tus )  <>  "OK")  then
     e r ro r (HTTP[Code] (s ta tus ) ,URL) ;
 f i ;
 #  now interpret  the maple  on the web page
 n : = 0 :
 w h i l e  ( n  <  l e n g t h ( w e b f i l e ) )  d o
   m : = n ;
   p a r s e ( w e b f i l e , s t a t e m e n t , l a s t r e a d = ' n ' ,  o f f s e t = n ) ;
   i f  ( p r i n t f i l e )  t h e n  p r i n t f ( " % s " , w e b f i l e [ m + 1 . . n ] ) ;  f i ;
 o d :
end:

l o a d e d  5 4  p o i n t s  i n t o  b d a t a .
OK, we have 54 data points; let'ts fit them with least squares and see how it looks.
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Least squares is (apparently) not a great fit, because the outliers screw things up 
badly.
Let's repeat the process from last time, defining the thing to minimize to be the log 
of 1+ .  Recall, that is quadratic-like for small distances, but big 
distances just count like the log... that is, some, but not a crazy amount.

E : = ( d a t a , m , b )  - >  l o c a l  i ;  a d d (  o b j ( d a t a [ i ] , m , b ) ,  i = 1 . . n o p s ( d a t a ) )

Let's guess the slope is -1 and the intercept is 19.  How far away is this line?

139.1518346

Let's compare to the least squares result.

254.4789849

So it looks like y=-x+19 is a better fit than what standard least squares gives.  

Now let's take a look at what the surface z=E(bdata, m, b)  looks like near this line, 
as we vary slope and intercept.



>  >  

(7)(7)

>  >  

(6)(6)

>  >  

Clearly there's a unique minimum in the box  -2 < m < 1,  15< b < 25.

We could try to find all the critical points of this surface, but it is complicated 
enough to baffle solve, so lets solve numerically.
f s o l v e  needs a little hint (which can either be a range or a starting point.  Let's try 
giving it a starting point:

Really?  That's not what we expected!  Is it a critical point?  Sure: 

But it is a saddle rather than a minimum, as we can see from the graph:

p l o t 3 d ( E ( b d a t a ,  m ,  b ) ,  m  =  - 2 8 . . - 2 4 ,  b  =  - 7 4 . . - 7 2 )
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Since we know roughly where the minimum should be, let's instead try a range for 
slope and intercept.

Yup, that's the line we wanted.

In fact, we didn't discuss this, but Maple has a built-in facility to try to find minima 
of functions of one or more variables.
Minimizing such functions without using calculus has made siginificant progress in 
the last 20 years or so, and Maple has a pretty good procedure built it.  (While you 
can use this in your project, note that it will miss the non-minimum critical point in 
part 3 (cuz it isn't a minimum), so you still need to do the calculus or the thinking to 
figure out what it means.
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Let's plot the line from minimizing the log(1+x^2) distance and the least squares line
along with our points.

Let's do both a "wide" view that shows the outliers, and  a zoomed in view that shows
how different they really are (ie, close to the bulk of the data).
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The least-log-squares method is a "robust" fitting method, in that it is much less 
sensitive to data with some outliers (or big noise) thrown in than regular least 
squares, but acts like least squares for small variations.

There are other, more recent, methods that are also robust.  In particular, the Least 
Trimmed Squares method (introduced in the 1980s, but significantly studied only in 
the last 20 years)  examines all subsets throwing out k points, and picks the "best" 
line from among those subsets.  This is a lot more computation that regular least 
squares, but still tractable now that computers are reasonably fast.

(I don't know why maple insists on calling the variable  instead of x, so I swapped 
it out.)

Another robust method is the Repeated Median Estimator (also introduced in the 
1980s, but becoming popular recently now that some significant theoretical 
developments have drastically reduced the computation cost).  This looks at the 
median of the medians of slopes and intercepts over a bunch of pairs of points.  I 
discussed this a little in class, but too much to write here.

Now let's look at all ov these various versions, and notice that the robust ones are all
close, and regular least squares gets strongly influenced by the outliers.



As you can see, the robust fits are all quite close (although they differ a little), but 
the regular least squares is vastly different.

We could discuss measures of how good these are, etc.  But really, that should be an 
AMS class, and I'm tired of least squares.

Let's move on to talking about differential equations and paper airplanes (gliders).  
That's not here, so you hadda be there.


