2019-09-24

Recall, I have office hours by appointment also, so if you want to see me on a monday, say, send an email.
LLet's figure out how to generate some data to fit.
EFirst, lets make a random line.
> $y=m \cdot x+b$

$$
\begin{equation*}
y=m x+b \tag{1}
\end{equation*}
$$

[Here ae some help pages to look at about random things.
$>$?random
> ?HowDoI,WorkWithRandomGenerators
> rand()
395718860534
$>\operatorname{rand}()$
193139816415
$>\operatorname{rand}(1 . .6)$
proc()
proc() option builtin $=$ RandNumberInterface; end proc $(6,6,3)+1$ end proc
[> dice: $=\operatorname{rand}(1 . .6)$:
$>$ dice(), dice(), dice()

$$
\begin{equation*}
5,6,2 \tag{5}
\end{equation*}
$$

> with(RandomTools[MersenneTwister])
[GenerateData, GenerateFloat, GenerateFloat64, GenerateInteger,
GenerateInteger32, GenerateUnsignedInt32, GetState, NewGenerator, SetState]
> GenerateFloat()

$$
\begin{equation*}
0.0809094426 \tag{7}
\end{equation*}
$$

$>$ slope $:=4 \cdot$ GenerateFloat () -2

$$
\begin{equation*}
\text { slope }:=1.624714887 \tag{8}
\end{equation*}
$$

[It gives me a number between 0 and 1 , want something between -2 and +2 .
> intercept $:=10 \cdot$ GenerateFloat() -5

$$
\begin{equation*}
\text { intercept }:=-1.572161447 \tag{9}
\end{equation*}
$$

$>$ targetline $:=$ slope $\cdot x+$ intercept

$$
\begin{equation*}
\text { targetline }:=1.624714887 x-1.572161447 \tag{10}
\end{equation*}
$$

Here's another way to generate a bunch of random numbers. It is a little more versatile, since it allows us to have them be drawn from a distribution. That is, instead of having the random numbers spread evenly over some interval, instead we can have them more likely to be in one place than another. A Normal distribution is a "bell-curve" with a given mean an standard deviation.

L> with(Statistics):
> Sample(Normal(0, 1))(10)
[- 1.07242412799827, -0.329077870547065, -0.617091936909790,
[- 0.510481396665271, 0.101089105510362, -2.69368070347827, 2.11880776187563, 4.84452612072164, 1.55213244267934, $-2.27333020698658,-0.309844357941371,-4.96998798393336$, -0.535760613518974

Let's have a look at how these spread out. I'll use the Statistics[Histogram] to generate a frequency plot comparing 200 points from a Uniform distribution on [-1, 1] to a Normal distribution with mean 0 and std.dev 0.5.
$>\operatorname{plots}[$ display] $(\langle\operatorname{Histogram}(S a m p l e(\operatorname{Normal}(0,0.5))(200)$, title $=$ "Normal") $\mid \operatorname{Histogram}(\operatorname{Sample}(\operatorname{Uniform}(-1,1))(200)$, title $=" U n i f o r m ")\rangle)$

So we can see that the Normal samples cluster near the mean, while the Uniform ones are more spread out.
[> xvals:= Sample(Uniform $(-10,10))(20)$:
[> xvals[1]
-0.345084972592954
[> eval(targetline, $x=x$ vals[1] -2.13282613925176
> targetline(xvals[1])

$$
\begin{equation*}
1.624714887 \times(-0.345084972592954)-1.572161447 \tag{14}
\end{equation*}
$$

[> linef:= unapply(targetline, x)

$$
\text { linef }:=x \mapsto 1.624714887 x-1.572161447
$$

[> linef(xvals[1])

$$
\begin{equation*}
-2.13282613925176 \tag{16}
\end{equation*}
$$

「> xvals

```
[ -0.345084972592954, -0.450669011377069, 7.98886497134678,
    -2.06248162915906, -6.84001854327599, -8.19350925787260,
    5.97462610499476, 4.07610812493634, -3.93873746886630,
    9.38445141344071, -1.08214844393362, 2.05674139534111,
    -2.92165125192468, -9.99975711677289, -8.78354922628864,
    1.84798854679426, 2.02501114729715, 0.643193515469413,
    -1.52468265311085, -0.520829021552613
    > yvals:= [seq(linef(xvals[i]),i=1..20)]
    yvals := [-2.13282613925176, -2.30437009889390, 11.4074664021799,
        -4.92310605405874, -12.6852414016166, -14.8842779150379,
        8.13490253004381, 5.05035210460572, -7.97148684865177,
        13.6748964707453, -3.33034413380284, 1.76945691671985,
        -6.31901173062422, -17.8189157010051, -15.8429246356485,
        1.43029305598213, 1.71790431035463, -0.527155367194980,
        -4.04933605145985, -2.41836011189817]
[or I could use map
> yvals:= map(linef, xvals)
yvals := [ -2.13282613925176, -2.30437009889390, 11.4074664021799,
        -4.92310605405874, -12.6852414016166, -14.8842779150379,
        8.13490253004381, 5.05035210460572, -7.97148684865177,
        13.6748964707453, -3.33034413380284, 1.76945691671985,
        -6.31901173062422, -17.8189157010051, -15.8429246356485,
        1.43029305598213, 1.71790431035463, -0.527155367194980,
        -4.04933605145985, -2.41836011189817]
> pairXY:= x->[x,linef (x)]
        pairXY:= x}\mapsto[x,\operatorname{linef}(x)
> XYvals:= map(pairXY, xvals)
XYvals := [ [ -0.345084972592954, -2.13282613925176],
[ \(-0.450669011377069,-2.30437009889390],[7.98886497134678\), 11.4074664021799], [ -2.06248162915906, -4.92310605405874], [-6.84001854327599, -12.6852414016166], [-8.19350925787260, \(-14.8842779150379]\), [5.97462610499476, 8.13490253004381], [4.07610812493634, 5.05035210460572], [ -3.93873746886630 , -7.97148684865177], [9.38445141344071, 13.6748964707453], [ \(-1.08214844393362,-3.33034413380284],[2.05674139534111\), 1.76945691671985], [-2.92165125192468, -6.31901173062422], [-9.99975711677289, -17.8189157010051], [-8.78354922628864, -15.8429246356485], [1.84798854679426, 1.43029305598213],
```

[^0]
[$>$ Noise $:=\operatorname{Sample}(\operatorname{Normal}(0,0.5))(20)$
Noise $:=[0.500432244431485,-0.566470167940209,0.267772261909304$,
$-0.187214187911572,0.442386705419446,-0.491470956527422$, $-0.937864453301053,-0.0321257433690264,0.137194506456044$, $0.396159675432445,-0.118407965413127,-0.464284114895288$, $-0.310629495524704,0.446284927640902,-0.126982831806239$, $0.135742216006806,0.448691808227012,0.675057879136975$, $0.811324418836003,-0.121833519713645$]
[make some noisy data, as xy list
$>$ [xvals[10], linef(xvals[10]) + Noise[10]]
[9.38445141344071, 14.0710561461778]
$>$ Noisy $:=[\operatorname{seq}([x v a l s[i], \operatorname{linef}(x v a l s[i])+$ Noise $[i]], i=1 . .20)]:$
\# I don't have to convert since I'm building it as a list.
$>\operatorname{plot}([X Y v a l s L$, Noisy, linef $(x)], x=-10 . .10$, style $=[$ point\$2, line], symbolsize $=[20,15]$, symbol $=[$ box, solidcircle $])$

[^0]: [2.02501114729715, 1.71790431035463], [0.643193515469413, -0.527155367194980], [-1.52468265311085, -4.04933605145985], [$-0.520829021552613,-2.41836011189817]]$
 [or, more efficiently
 $>$ XYvals := map $(x \rightarrow[x, \operatorname{linef}(x)], x$ vals $)$
 XYvals $:=[[-0.345084972592954,-2.13282613925176]$,
 [$-0.450669011377069,-2.30437009889390],[7.98886497134678$, 11.4074664021799], [-2.06248162915906, -4.92310605405874], [-6.84001854327599, -12.6852414016166], [-8.19350925787260, -14.8842779150379], [5.97462610499476, 8.13490253004381], [4.07610812493634, 5.05035210460572], [-3.93873746886630 , -7.97148684865177], [9.38445141344071, 13.6748964707453], [$-1.08214844393362,-3.33034413380284],[2.05674139534111$, 1.76945691671985], [$-2.92165125192468,-6.31901173062422$], [-9.99975711677289, -17.8189157010051], [-8.78354922628864, -15.8429246356485], [1.84798854679426, 1.43029305598213], [2.02501114729715, 1.71790431035463], [0.643193515469413, $-0.527155367194980]$, [$-1.52468265311085,-4.04933605145985]$, [-0.520829021552613, -2.41836011189817]]
 $>\operatorname{plot}([\operatorname{XYvals}, \operatorname{linef}(x)], x=-10 . .10$, style $=[$ point, line $])$
 Error. (in plot) incorrect first argument [Vector[row](20. \{(1) $=$ [HFloat(-0.3450849725929537), HFloat(-2.132826139251759)]. $(2)=$ [HFloat $(-0.4506690113770695) \cdot$ HFloat (-2.304370098893897)]. $(3)=[$ HFloat(7.988864971346782), HFloat(11.407466402179946) $(4)=$ [HFloat (-2.062481629159059). HFloat $(-4.923106054058737)] .(5)=[$ HFloat (-6.840018543275992). HFloat $(-12.685241401616558)] .(6)=[$ HFloat (-8.193509257872599), HFloat (-14.884277915037934)]. (7) = [HFloat(5.974626104994758), HFloat(8.13490253004381)], $(8)=$ [HFloat(4.0761081249363365), HFloat(5.0503521046057225)]. $(9)=$ [HFloat (-3.9387374688662984), HFloat(-7 ... 9021552613), HFloat $\left.(-2.418360111898174)]\}), 1.624714887^{*} x-1.572161447\right]$
 Ooops, I forgot that Sample gives me a Vector instead of a list; let's covert it into something plot can deal with.
 > XYvalsL := convert(XYvals, listlist) :
 $>\operatorname{plot}([X Y v a l s L, \operatorname{linef}(x)], x=-10 . .10$, style $=[$ point, line $])$

