2029-09-05 ... the future is now!
[related to problem \#2
$>f:=x \rightarrow x^{4}-5$

$$
\begin{equation*}
f:=x \mapsto x^{4}-5 \tag{1}
\end{equation*}
$$

$>\operatorname{factor}(f(x))$

$$
\begin{equation*}
x^{4}-5 \tag{2}
\end{equation*}
$$

[need to tell maple to adjoin the 4th root of 5 to the rationals...
$\left[>\right.$ factor $\left(f(x), 5^{\frac{1}{4}}\right)$

$$
\begin{equation*}
-\left(\sqrt{5}+x^{2}\right)\left(-x+5^{1 / 4}\right)\left(x+5^{1 / 4}\right) \tag{3}
\end{equation*}
$$

[the following is wrong (question wants EXACT solutions)
$[>$ factor $(f(x)$, complex $)$
$(x+1.49534878122122)(x+1.495348781$ I) $(x-1.495348781$ I) $(x-1.49534878122122)$
$>$ factor $\left(f(x),\left\{5^{\frac{1}{4}}, I\right\}\right)$

$$
\begin{equation*}
\left(\mathrm{I} 5^{1 / 4}-x\right)\left(\mathrm{I} 5^{1 / 4}+x\right)\left(-x+5^{1 / 4}\right)\left(x+5^{1 / 4}\right) \tag{5}
\end{equation*}
$$

[If for some reason we didn't know the roots of $x^{4}=5$, we can ask....
$>\operatorname{RootOf}\left(x^{4}-5\right)$

$$
\begin{equation*}
\operatorname{Root} O f\left(_Z^{4}-5\right) \tag{6}
\end{equation*}
$$

$[>$ allvalues(\%)

$$
\begin{equation*}
5^{1 / 4}, \mathrm{I} 5^{1 / 4},-5^{1 / 4},-\mathrm{I} 5^{1 / 4} \tag{7}
\end{equation*}
$$

Enough of that
$>\operatorname{plot}\left(\frac{\sin \left(x^{4}\right)}{x}+x, x=-4 . .4\right)$

EThis is a sucky picture... what's wrong?
$\left[>\operatorname{plot}\left(\frac{\sin \left(x^{4}\right)}{x}+x, x=-4 . .4\right.\right.$, view $=[3 . .4,2.5$..4.5] $)$

find the unique cubic passing through the four points.
$>c u b:=x \rightarrow a \cdot x^{3}+b \cdot x^{2}+c x+d ;$
data;

$$
\begin{gather*}
c u b:=x \mapsto a x^{3}+b x^{2}+c x+d \\
{[[1,2],[2,4],[4,-2],[5,0]]} \tag{10}
\end{gather*}
$$

Lwant to solve 4 equations.
$>\operatorname{cub}(1)=2 ; \operatorname{cub}(2)=4 ; \operatorname{cub}(4)=-2 ; \operatorname{cub}(5)=0$
$a+b+c+d=2$
$8 a+4 b+2 c+d=4$
$64 a+16 b+4 c+d=-2$
$125 a+25 b+5 c+d=0$
$\overline{=}>$ saul $:=\operatorname{solve}(\{\operatorname{cub}(1)=2, \operatorname{cub}(2)=4, \operatorname{cub}(4)=-2, \operatorname{cub}(5)=0\})$

$$
\text { saul }:=\left\{a=\frac{5}{6}, b=-\frac{15}{2}, c=\frac{56}{3}, d=-10\right\}
$$

$>\operatorname{subs}(\operatorname{saul}, \operatorname{cub}(x))$;

$$
\begin{equation*}
\frac{5}{6} x^{3}-\frac{15}{2} x^{2}+\frac{56}{3} x-10 \tag{13}
\end{equation*}
$$

EI can pick off the x and y values of data...
[> data[3], " is", data[3][1], data[3][2]

$$
\begin{equation*}
[4,-2], \text { " is", } 4,-2 \tag{14}
\end{equation*}
$$

$>\operatorname{cub}(\operatorname{data}[3][1])=\operatorname{data}[3][2]$ $64 a+16 b+4 c+d=-2$
$\stackrel{>}{>}$ \{seq(

$$
\operatorname{cub}(\operatorname{data}[i][1])=\operatorname{data}[i][2],
$$

$$
\begin{equation*}
i=1 \text {..nops }(\text { data }) \tag{16}
\end{equation*}
$$

) \}
$\left\{\begin{array}{l}a+b+c+d=2,8 a+4 b+2 c+d=4,64 a+16 b+4 c+d=-2,125 a+25 b+5 c \\ \quad+d=0\}\end{array}\right.$
$\left[>\right.$ wrong $:=x \rightarrow a x^{3}$

$$
\begin{equation*}
\text { wrong }:=x \mapsto a x^{3} \tag{17}
\end{equation*}
$$

$\stackrel{>}{ }>\operatorname{solve}($ eqlist (data))

$$
\begin{equation*}
\left\{a=\frac{5}{6}, b=-\frac{15}{2}, c=\frac{56}{3}, d=-10\right\} \tag{22}
\end{equation*}
$$

$\stackrel{>}{>} \operatorname{subs}(\%, \operatorname{cub}(x))$

$$
\begin{equation*}
\frac{5}{6} x^{3}-\frac{15}{2} x^{2}+\frac{56}{3} x-10 \tag{24}
\end{equation*}
$$

$>$ makecub $:=\operatorname{data} \rightarrow \operatorname{subs}(\operatorname{solve}($ eqlist $(\operatorname{data})), \operatorname{cub}(x))$
makecub $:=\operatorname{data} \mapsto \operatorname{subs}(\operatorname{solve}(\operatorname{eqlist}(\operatorname{data})), \operatorname{cub}(x))$
[> makecub(data)

$$
\begin{equation*}
\frac{5}{6} x^{3}-\frac{15}{2} x^{2}+\frac{56}{3} x-10 \tag{25}
\end{equation*}
$$

$>$ unapply transforms an expression into a function.
> $f:=$ unapply(makecub (data),$x)$

$$
\begin{equation*}
f:=x \mapsto \frac{5}{6} x^{3}-\frac{15}{2} x^{2}+\frac{56}{3} x-10 \tag{27}
\end{equation*}
$$

Error, invalid subscript selector

$>$ nonsense[1,3]
Error, invalid subscript selector
$>$ nonsense[1][3]

$$
\begin{equation*}
f r s_{3} \tag{33}
\end{equation*}
$$

Emaybe we want a looooop (to make a newline without submitting, do shift-enter

```
for i from 1 to 3 do
```

 nonsense[i];
 od
 frs
 [sec \(1, \sec 2, \sec 3]\)
 [apple, pear]
 EActually, this is polynomial interpolation, already built in.
>> ?PolynomialInterpolation
>> with(CurveFitting)
[ArrayInterpolation, BSpline, BSplineCurve, Interactive, LeastSquares, Lowess, PolynomialInterpolation, RationalInterpolation, Spline, ThieleInterpolation]
>> PolynomialInterpolation(data, x)

$$
\begin{equation*}
\frac{5}{6} x^{3}-\frac{15}{2} x^{2}+\frac{56}{3} x-10 \tag{36}
\end{equation*}
$$

