```
9/3/2019 --
HH16, HH15, HH20 ... bad license file. HH02, HH09, HH10, HH03, HH19, HH31, old licen
HH18 seems good. No one else is awake.
[>
types of things... x is a name. so is jimmyJoeBob
> jimmyJoeBob:= 4;
\[
\begin{equation*}
\text { jimmyJoeBob := } 4 \tag{1}
\end{equation*}
\]
Estrings are a bunch of charcters
\(>\) something \(:=\) "something in the way she moves" something \(:=\) "something in the way she moves"
\(>\) something[5]
"t"
numbers come in many forms
\(>27,8.0123, \operatorname{sqrt}(5), 1+I \cdot \operatorname{sqrt}(2), 0,0,5\)
\[
\begin{equation*}
27,8.0123, \sqrt{5}, 1+\mathrm{I} \sqrt{2}, 0,0,5 \tag{4}
\end{equation*}
\]
\(>\) somelist \(:=\%\)
\[
\begin{equation*}
\text { somelist }:=27,8.0123, \sqrt{5}, 1+\mathrm{I} \sqrt{2}, 0,0,5 \tag{5}
\end{equation*}
\]
[I can refer to the 2 nd element. The thing above is actually a (finite) sequence, but whatever.
> somelist[2]
\[
\begin{equation*}
8.0123 \tag{6}
\end{equation*}
\]
[can box stuff up into a set or a list... which is a kind of array.
\(>\{\) somelist \(\}\)
\[
\begin{equation*}
\{0,5,27,8.0123, \sqrt{5}, 1+\mathrm{I} \sqrt{2}\} \tag{7}
\end{equation*}
\]
\(>\) mylist \(:=[\) somelist \(]\)
\[
\begin{equation*}
\text { mylist }:=[27,8.0123, \sqrt{5}, 1+\mathrm{I} \sqrt{2}, 0,0,5] \tag{8}
\end{equation*}
\]
sets have no fixed order, no repeated elements, lists fixed order, repeats are ok.
\(>\) mylist[4]
\[
\begin{equation*}
1+\mathrm{I} \sqrt{2} \tag{9}
\end{equation*}
\]
> mylist[10]
Error, invalid subscript selector
Theres lots more types.
To make a sequence by computing....
\(>\operatorname{seq}\left(i^{2}, i=1 . .12\right)\)
\[
\begin{equation*}
1,4,9,16,25,36,49,64,81,100,121,144 \tag{10}
\end{equation*}
\]
let's write a function that given \(n\) and \(m\), gives the squares between \(n\) and \(m\) inclusive.
LThis is not it.
```


$$
>\operatorname{seq}\left(T^{2}, T=1 . .12\right)
$$

$$
\begin{equation*}
1,4,9,16,25,36,49,64,81,100,121,144 \tag{15}
\end{equation*}
$$

$$
>h:=(m, n) \rightarrow \operatorname{seq}\left(i^{2}, i=m . . n\right)
$$

$$
\begin{equation*}
\frac{\text { Warning, i' is implicitly declared local to procedure 'h' }}{h:=(m, n) \mapsto \operatorname{seq}\left(i^{2}, i=m \ldots\right)} \tag{16}
\end{equation*}
$$

end

$$
\begin{equation*}
h:=\operatorname{proc}(m, n) \text { local } i \text {, return } \operatorname{seq}\left(i^{\wedge} 2, i=m . . n\right) \text { end proc } \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
25,36,49,64 \tag{17}
\end{equation*}
$$

$$
\begin{aligned}
& {[\gg(8,5)} \\
& => \\
& => \\
& F>h:=\operatorname{proc}(m, n)
\end{aligned}
$$

$$
\text { local } i
$$

$$
\operatorname{return}\left(\operatorname{seq}\left(i^{2}, i=m . . n\right)\right)
$$

[semicolon ends a statement. colon (:) ends and doesn't write answer.
$\rightarrow>$ myseq $:=h(1,100):$
$>$ myseq[23]
$>h:=\boldsymbol{\operatorname { p r o c }}(m, n)$
local i;
if $(m \geq n)$ then
print ("are you sure? m is bigger than n ", m, n);
return $\left(\operatorname{seq}\left(i^{2}, i=m . . n\right)\right)$;
end:
$h:=\operatorname{proc}(m, n)$
if $n<=m$ then $\operatorname{print}($ "are you sure? m is bigger than $\mathrm{n} ", m, n$) end if;
return $\operatorname{seq}\left(i^{\wedge} 2, i=m . . n\right)$
end proc
$>h(3,2)$
"are you sure? m is bigger than $n ", 3,2$

Enot what I want, but close
$>\operatorname{plot}([\cos (t), \sin (t)], t=0 . .2 \cdot \mathrm{Pi})$

"> cpic $:=\operatorname{plot}([\cos (t), \sin (t), t=0 . .2 \cdot \mathrm{Pi}]$, thickness $=2$, color $=$ "SlateGrey")

To show together, use display

$\stackrel{>}{ }>\operatorname{display}([$ cpic, rpic $])$

$\stackrel{>}{ }$ with(plots)
[animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d,
conformal, conformal3d, contourplot, contourplot3d, coordplot, coordplot3d, densityplot, display, dualaxisplot, fieldplot, fieldplot3d, gradplot, gradplot3d, implicitplot, implicitplot3d, inequal, interactive, interactiveparams, intersectplot, listcontplot, listcontplot3d, listdensityplot, listplot, listplot3d, loglogplot, logplot, matrixplot, multiple, odeplot, pareto, plotcompare, pointplot, pointplot3d, polarplot, polygonplot, polygonplot3d, polyhedra_supported, polyhedraplot, rootlocus, semilogplot, setcolors, setoptions, setoptions3d, shadebetween, spacecurve, sparsematrixplot, surfdata, textplot, textplot3d, tubeplot]
$\stackrel{>}{>} \operatorname{display}([$ cpic, rpic])

$>\operatorname{display}([$ cpic, rpic $]$, view $=[-1 . .1,0.5$..1.2 $]$, scaling $=$ constrained $)$

Efunction of two variables
$>\operatorname{plot}\left(x^{2}+y^{2}, x=-1 . .1, y=-1 . .1\right)$

${ }^{>} \operatorname{plot} 3 d([\cos (t), \sin (t), t], t=-2 \mathrm{Pi} . . \mathrm{Pi}$, axes $=$ boxed $)$

$\stackrel{>}{>}$? tubeplot
$>$ tubeplot $([\cos (t), \sin (t), t], t=-2$ Pi ..Pi, radius $=.1$, axes $=$ boxed $)$

$\left\lceil\right.$ tubeplot $\left(\left[\cos (t), \sin (t), \frac{t}{5}\right], t=-2\right.$ Pi ..Pi, radius $=.1$, axes $=$ boxed, scaling $=$ constrained $)$

