
Solutions to Homework 8- MAT319

November 16, 2008

1 Section 4.1

Exercise 1 (#4). limx→c f(x) = L ⇐⇒ limx→0 f(x+ c) = L

⇒:
Suppose limx→c f(x) = L. Write y = x − c. If ε > 0, then there exists δ > 0
so that |x − c| < δ =⇒ |f(x) − L| < ε. In terms of y, this is |y| < δ =⇒
|f(y + c)− L| < ε. Thus limy→0 f(y + c) = L.
⇐:
Suppose limx→0 f(x+ c) = L. Write y = x+ c. If ε > 0, then there exists δ > 0
so that |x| < δ =⇒ |f(x + c) − L| < ε. In terms of y, this is |y − c| < δ =⇒
|f(y)− L| < ε. Thus limy→c f(y) = L.

Exercise 2 (#9).

(a). lim 1
1−x = −1

We use the sequential criterion. Suppose xn → 2. Then lim 1
1−xn

=
1

1−lim xn
= −1, by the limit laws.

(b). limx→1
x
x+1 = 1/2.

Again we use the sequential criterion and the limit laws. Suppose xn → 1.
By applying the limit laws, we see that

lim
x→1

x

x+ 1
=

1
1 + 1

= 1/2 (1)

(c). lim x2

|x| = 0.

Suppose ε > 0. Then | x
2

|x| | = |x|2
|x| = |x|. So choose |x| < δ and the result

follows.

(d). limx→1
x2−x+1
x+1 = 1/2

We use the sequential criterion and the limit laws. Suppose xn → 1. Then

lim
x2
n − xn + 1
xn + 1

=
1− 1 + 1

1 + 1
= 1/2 (2)
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Exercise 3 (#14). Let f(x) = x if x ∈ Q and f(x) = 0 otherwise.

(a). limx→0 f(x) = 0.

We use the sequential criterion. Suppose xn → 0. Then |f(xn)| ≤ |xn| since
f(xn) is either 0 or xn. Thus f(xn)→ 0.

(b). If c 6= 0, then f(x) does not have a limit at c.

By the sequential criterion, we need to find a sequence xn → c so that f(xn)
does not converge. By theorem 2.4.8 (the density theorem) for any n ∈ N
we can choose a rational number yn satisfying c − 1/n < yn < c. This gives
a sequence of rational numbers yn which converges to c. A similar argument
applying corollary 2.4.9 gives a sequence of irrational numbers zn converging to
c. Now define xn as follows: Put x1 = y1, x2 = z1, x3 = y2, etc... Then it
follows that yn and zn are subsequences of xn. But f(yn) clearly converges to
0 (check this) and f(zn) clearly converges to c (check this as well). Since 0 6= c,
this shows that f(xn) has subsequences that converge to two different limits,
and therefore cannot be a convergent sequence.

2 Section 4.2

Exercise 4 (#1).

All four of these are done in exactly the same way, so for brevity I will just
do part a. The answers to all four parts are in the back of the book.

(a). limx→1(x+ 1)(2x+ 3) = 10

We have limx→1(x+ 1)(2x+ 3) = limx→1(x+ 1) limx→1(2x+ 3) =
(limx→1 x+ 1)(2 limx→1 x+ 3) = (1 + 1)(2 + 3) = 10.

Exercise 5 (#4). limx→0 cos(1/x) does not exist but limx→0 x cos(1/x) = 0.

By the sequential criterion, we need to find a sequence xn → 0 so that
cos(1/xn) has no limit. Define xn = 1

πn . Then cos(1/xn) = cos(πn) =
(−1)n, which does not converge. On the other hand −1 ≤ cos(1/x) < 1, so
−x ≤ x cos(1/x) ≤ x, so by the squeeze theorem and the sequential criterion
limx→0 x cos(1/x) = 0.

Exercise 6 (# 9).

(a). If limx→c f and limx→c(f + g) exist, then limx→c g exists.

From the limit laws for functions, it follows that limx→c(f + g) − f exists.
But (f + g)− f = g.

(b). If limx→c f and limx→c fg exist, does limx→c g exist?

No. Consider f(x) = 0 and g(x) = 1
x−c .
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Exercise 7 (# 10). Give examples of functions f and g that do not have limits
as x→ c, but fg and f + g do.

Consider f(x) = 1 if x ∈ Q and f(x) = −1 if x 6∈ Q, and consider g(x) =
−f(x). Then it is clear that f and g do not have limits as x → c, for any c.
On the other hand (f + g)(x) = 0 and fg(x) = −f2(x) = −1. So the sum and
product functions have limits for every c.

3 Section 4.3

Exercise 8 (#2). Give an example of a function with a right hand limit but no
left hand limit.

Consider f(x) = 1 if x ≥ 0 and f(x) = −1 if x ∈ Q and x < 0 and f(x) = 1
if x 6∈ Q and x < 0.

Exercise 9 (#3). Put f(x) = |x|−1/2 for x 6= 0. Then the right and left hand
limits as x→ 0 are +∞.

Notice that f(x) = f(−x). Then it follows that the right and left hand limits,
whatever they are, must be the same. (Check this from the definition). To show
the limit is +∞ we use the sequential criterion. Suppose xn → 0. Then it follows
that |xn|1/2 → 0. So if ε > 0, choose N so that n > N =⇒ |xn|1/2 < ε. But
then |xn|−1/2 > 1/ε. So for any R ∈ R, we just have to choose ε so that 1/ε > R.
Then there is N ∈ N so that n ≥ N =⇒ |xn|−1/2 > R.

Exercise 10 (#8). Suppose f is defined for x > 0. Then limx→∞ f(x) =
L ⇐⇒ limx→0+ f(1/x) = L.

⇒: If ε > 0 there exists R ∈ R so that x ≥ R =⇒ |f(x)− L| < ε. Thus if
x < 1/R then |f(1/x)− L| < ε.
⇐: If ε > 0 there exists δ > 0 so that x < δ =⇒ |f(1/x) − L| < ε. Write
y = 1/x. Then if y > δ we have that |f(y)− L| < ε. Thus limy→0+ f(y) = L.
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