
Solutions to Homework 6- MAT319

November 10, 2008

1 Section 3.3

Exercise 1 (# 4). Let x1 = 1 and xn+1 =
√

2 + xn. Then lim xn = 2

First we show that xn is increasing by using an induction argument. x2 =√
3 > 1 = x1 so the base case holds. Now suppose that xn > xn−1. Then

xn + 2 > xn−1 + 2. Then
√
xn + 2 >

√
xn−1 + 2. Thus xn+1 > xn. Now we

show that xn is bounded above by 2. We use induction again: x1 < 2 so the
base case holds. If xn < 2, then xn+1 =

√
2 + xn <

√
2 + 2 = 2, as desired.

Now by the monotone convergence theorem, xn has a limit, say L. But then
L = limxn+1 = lim

√
xn + 2 =

√
(limxn + 2) =

√
L+ 2. So L2 − L − 2 = 0.

This equation has two solutions, namely L = 2, L = −1. Since xn > 0 for all n,
we deduce that L = 2.

Exercise 2 (# 7). Suppose x1 = a > 0 and xn+1 = xn + 1/xn. Then xn

diverges.

We proceed by contradiction. Suppose that xn converges. Then write L =
limxn. Then L = lim(xn + 1/xn) = limxn + 1/ limxn, so L = L + 1/L. Thus
0 = 1/L. Since this is impossible, we deduce that xn must diverge.

Exercise 3 (# 10). sn and tn are monotone and if lim sn = lim tn, then xn

converges.

First we show that sn = sup{xk : x ≥ n} is decreasing. Notice that sn =
max{xn, sn+1}. Thus sn+1 ≤ sn. Thus sn is decreasing. Now we show that
tn = inf{xk : x ≥ n} is increasing. Notice that tn = inf{xn, tn+1}. Thus
tn ≤ tn+1. so tn is a decreasing sequence. Now suppose that sn and tn converge.
since sn ≤ xn ≤ tn and since lim sn = lim tn, by the squeeze theorem it follows
that xn converges.

Exercise 4 (# 15). Calculate
√

5, correct to within 5 decimal places

Following the example, set sn+1 = 1/2(sn +5/sn), and s1 = 5. Then s2 = 3,
s3 = 7/3, s4 = 2.23809524, s5 = 2.2360689. By the inequality sn −

√
(5) ≤

(s2n − 5)/sn we see that
s5 −

√
5 ≤ .0000018 (1)

which tells us that s5 is correct up to 5 decimal places.
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2 Section 3.4

Exercise 5 (# 3). let fn be the fibonacci sequence and let xn = fn+1/fn.
Suppose that L = limxn. What is the value of L?

Recall that fn+1 = fn +fn−1 so that xn = fn−1/fn+1 + 1. Taking limits, we
have L = lim fn−1/fn+1 + 1 = 1/L + 1. (Prove to yourself that lim fn−1/fn is
the reciprocal of lim fn/fn−1.) So L = 1/L+ 1 and thus L2−L−1 = 0. By the
quadratic formula and the fact that xn > 0 we deduce that L = 1/2 +

√
(5)/2.

Exercise 6 (#8).

(a). lim(3n)1/2n = 1

Notice that (3n)1/2n = (3/2)1/2n(2n)1/2n. This is a subsequence (the even
terms) of the sequence (3/2)1/nn1/n. Since limn1/n = 1 and lim(3/2)1/n = 1 it
follows that the limit of the product is the product of the limits, thus the limit
is 1.

(b). lim(1 + 1/(2n))3n = e3/2

Notice that (1 + 1/(2n))3n = (1 + 1/(2n))2n(1 + 1/(2n))n =
(1 + 1/(2n))2n

√
(1 + 1/(2n))2n) But (1 + 1/(2n))2n is a subsequence (the even

terms) of (1 + 1/n)n which converges to e. Thus

lim(1 + 1/(2n))3n = lim
(
(1 + 1/(2n))2n

√
(1 + 1/(2n))2n)

)
= (2)

lim(1 + 1/(2n))2n lim
√

(1 + 1/(2n))2n) = e
√

lim(1 + 1/(2n)2n = (3)
e
√
e = e3/2 (4)

Exercise 7 (#9). Suppose every subsequence of xn has a subsequence that
converges to 0. Then xn converges to 0.

By considering the contrapositive statement, it suffices to prove that if xn

does not converge to 0, then there exists a subsequence xnk
that does not

converge to 0. If xn does not converge to 0, it follows from the definition that
there exists ε > 0 so that for all N > 0, there exists nk > N so that |xnk

| > ε.
So we recursively construct a subsequence of xn that does not converge to 0 as
follows: choose n1 > 1 so that |xn1 | > ε. Then to find xnk+1 , choose nk+1 > nk

so that |xnk+1 | > ε. (Here we are choosing N = nk in the definition above).
Then it follows that nk+1 ≥ nk so that xnk

is actually a subsequence, and by
construction, we see that xnk

does not converge to 0.

3 Section 3.5

Exercise 8. #2

(a). Show directly that n+1
n is a Cauchy sequence.
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Suppose ε > 0. Then choose N so that if k > N , 1/k < ε/2. Then notice
that, for any m,n > N

|n+ 1
n
− m+ 1

m
| = |mn+m− nm− n

mn
= |m− n

mn
| ≤ m/mn+ n/mn = (5)

1/n+ 1/m < 2(ε/2) = ε. (6)

so the sequence is cauchy.

(b). 1 + 1/2! + . . .+ 1/n! is a Cauchy sequence.

As an exercise for yourself, prove that 1/n! < 1/2n as long as n ≥ 4. Then,
by using induction on m, prove that

1/2n + 1/2n+1 + . . .+ 1/2n+m ≤ 1/2n−1 (7)

Now if ε > 0 is given, choose N so that if n > N then 1/2n < ε. Then if
n > m > N , we have

|1 + 1/2! + . . .+ 1/n!− (1 + 1/2! + . . .+ 1/m!)| = (8)
|1/(m+ 1)! + . . .+ 1/(m+ n)!| ≤ |1/2m+1 + . . .+ 1/2m+n| (9)

1/2m ≤ ε (10)

so the sequence is Cauchy.

Exercise 9 (#5). Show that lim |
√

(n+ 1)−
√
n| = 0 but

√
n is not a Cauchy

sequence.

We have already shown that |
√
n+ 1 −

√
n| converges to 0 in a previous

homework assignment. To show it is not Cauchy, choose ε = 1/4, and suppose
N is given. Choose n = N , and choose m so that n

2
√

m
< 1/4 (we can do this

since the sequence 1/2
√
m converges, and n is a fixed number.) Then

√
m−

√
n =

m− n√
m+

√
n
≥ m− n

2
√
m

=
√
m

2
− n

2
√
m
> (11)

1/2− n

2
√
m
> 1/2− 1/4 = 1/2 (12)

So the sequence isn’t cauchy.
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