Solutions to Homework 5- MAT319

October 26, 2008

1 3.1

Exercise 1 (3).
This is just a straightforward calculation.

Exercise 2 (5).
(a) \(\lim \left(\frac{n}{n^2+1} \right) = 0 \)
Notice that
\[
\frac{n}{n^2+1} \leq \frac{n}{n^2} = \frac{1}{n}
\]
So if \(\epsilon > 0 \) is given, then choose \(N > 1/\epsilon \). Then if \(n > N \), then
\[
\frac{n}{n^2+1} \leq \frac{n}{n^2} = \frac{1}{n} < \epsilon
\]
as desired.

(b) \(\lim \left(\frac{2n}{n+1} \right) = 2 \)
Suppose \(\epsilon > 0 \) is given. We wish to choose \(N \) so that if \(n > N \), then we have
\[
\left| \frac{2n}{n+1} - \frac{2(n+1)}{n+1} \right| = \left| \frac{-1}{n+1} \right| < \frac{1}{n} < \epsilon
\]
It is clear that this inequality holds if we choose \(N > 1/\epsilon \).

(c) If \(\epsilon > 0 \), we wish to find \(N \) so that if \(n > N \) then
\[
\left| \frac{3n+1}{2n+5} - 3/2 \right| < \left| \frac{3n+1}{2n} - \frac{3n}{2n} \right| = \frac{1}{2n} \leq \epsilon
\]
It is clear that the above inequality holds if we choose \(N > \frac{1}{2\epsilon} \).
(d).

If $\epsilon > 0$ is given, we wish to show that

$$\left| \frac{n^2 - 1}{2n^2 + 3} - \frac{1}{2} \right| < \left| \frac{n^2 - 1}{2n^2} - \frac{n^2}{2n^2} \right| = \frac{1}{2}n^2 < \epsilon$$

It is clear that the above inequality holds when we choose $N > \frac{1}{\sqrt{2\epsilon}}$.

Exercise 3 (11).

If $\epsilon > 0$, then we wish to choose N so that if $n > N$ then we have

$$\left| \frac{n + 1 - n}{n(n + 1)} \right| = \frac{1}{n^2 + n} < \frac{1}{n} < \epsilon$$

So choose $N > 1/\epsilon$.

Exercise 4 (16). $\lim \frac{2^n}{n!} = 0$

First we prove the hint, that $2^n/n! \leq 2(2/3)^{n-2}$ if $n \geq 3$. For the base case, if $n = 3$ then we have $8/6 \leq 2(2/3)$. Suppose the result holds for n. Then

$$\frac{2(2^n)}{(n+1)n!} \leq \frac{2}{n+1} \cdot (2)(\frac{2}{3})^{n-2} \leq (2)(\frac{2}{3})^{n-1}$$

Now the result follows from example 3.1.11b.

2 3.2

Exercise 5 (6).

For a, Notice that $\lim(2 + 1/n) = 2 + \lim(1/n) = 2$, so that $\lim(2 + 1/n)^2 = \lim(2 + 1/n) \lim(2 + 1/n) = 4$. For b, we go back to the definition (just like in exercise 5 of the previous section) and choose $N > 1/\epsilon$. For c, rationalizing the numerator we find that

$$\sqrt{n} - 1 = \frac{n - 1}{n + 2\sqrt{n} + 1} = \frac{1 - 1/n}{1 + 2/\sqrt{n} + 1/n} < \frac{1 - 1/n}{2/\sqrt{n}} < \frac{1}{1 + 2/\sqrt{n}}$$

Now this last term is a quotient of two convergent sequences, the constant sequence 1 and the sequence $1 + 2/\sqrt{n}$. Both of these sequences converge to 1, so their quotient converges to 1. For d, we have

$$\lim \frac{n + 1}{n\sqrt{n}} = \lim \frac{1}{\sqrt{n}} + \lim \frac{1}{n\sqrt{n}} = 0$$

Exercise 6 (9). y_n and $\sqrt{n}y_n$ converge, and find their limits.
We have
\[y_n = \frac{1}{\sqrt{n + 1} + \sqrt{n}} < \frac{1}{\sqrt{n}} \]
Which converges to 0 by definition, with \(N \) chosen to be greater than \(1/\epsilon^2 \). On the other hand
\[\sqrt{n}y_n = \frac{\sqrt{n}}{\sqrt{n + 1} + \sqrt{n}} = \frac{1}{\sqrt{1 + 1/n + 1}} \]
We know that \(1 + 1/n \) converges to 1. By theorem 3.2.10, \(\sqrt{1 + 1/n} \) converges to 1. So a quick application of the limit laws tells us that \(\sqrt{n}y_n \) converges to \(1/2 \).

Exercise 7 (13).

For \(a \), we have
\[1 \leq n^{1/n} \leq n \]
so that
\[1 \leq n^{1/n^2} \leq n^{1/n} \]
By 3.1.11d, \(n^{1/n} \) converges to 1, so by the squeeze theorem the limit in question converges to 1. For \(b \), notice that
\[1 \leq (n!)^{1/n^2} \leq (n^n)^{1/n^2} = n^{1/n} \]
So by the squeeze theorem, the limit is 1.

Exercise 8 (20).

The hypothesis just tells us that \(x_n \) and \(x_n - y_n \) are convergent sequences. By the addition limit law, we see that \(x_n - (x_n - y_n) = y_n \) converges as well.